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Background. Contemporary distributed systems tend to leverage complex network topologies and intercommunication
technologies for performing complex computational tasks. It is quite common for such systems to rely on centralized coordination
where one or a group of designated servers serve as a management plane for the entire network. While this approach may simplify the
consensus process, it introduces additional requirements for infrastructure engineering and maintenance. Nodes serving as a control
plane require additional hardware resources as well as human effort and competence to manage external services capable of providing
basic coordination primitives. Most cases requiring consensus could be reduced to simplistic procedures like gathering knowledge
about network participants and dividing deterministically state slices between them. Therefore, implementing a complex coordination
solution that requires an additional maintenance method could be inefficient. The Replica State Discovery Protocol stands as a
lightweight coordination solution presenting a simple interface for achieving consensus between nodes within a cluster.

Methods. Within the ambit of this research, a set of cluster state reducers is described, providing basic coordination
capabilities, including the formation of a network participants list and task division between them. Using mathematical modeling, we
describe the procedures necessary for performing the said coordination tasks. Implementation and testing of reducers is done with
the Node.js platform capable of running JavaScript code on the server side. A theoretical analysis and description of the proposed
methods for distributed coordination are provided within this work to facilitate their integration into modern systems.

Results. As aresult of this research, we propose three new cluster state reducers serving as methods of basic coordination
capabilities as an exemplary application of RSDP. The first reducer is responsible for gathering the directory of participating
nodes within a cluster and maintaining their statuses based on the received data. The second reducer performs a timeframe
division within a cluster between the nodes to coordinate their execution in a mutually exclusive environment. Lastly, the rate
limit reducer describes a logic to perform consensus regarding a single value that should be shared throughout the system as
well as promptly updated if needed.

Conclusions. While engineering a complex distributed system requiring consensus among its subsystems or a set of
homogenous components, it's important to avoid complexities related to the management of additional infrastructure while still
providing a required level of consistency and availability. Having said that, the Replica State Discovery Protocol provides essential
lightweight capabilities to resolve the said problem through the means of its flexible state reducers system. RSDP is built with a layered
architecture in mind, capable of adjusting to the particular needs of the network as shown in this paper. By leveraging existing
communication infrastructure and avoiding redundant management layers, RSDP allows for significantly reducing the computational
complexity of coordination as well as costs associated with hardware needed for running a dedicated control plane. State reducers
described within this article provide basic capabilities required for the most common coordination tasks, including the construction of
a participants directory, task splitting and assignments, as well as consensus regarding the configuration parameters.
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security incidents; Replica State Discovery Protocol (RSDP); RSDP cluster state reducers.

Background

The rise of the information technology age has led to
the development of numerous automated systems for data
gathering and processing. It is quite common nowadays to
have shops or government services available directly on
personal computers or phones. As a result, the demand for
the availability of such services rises every year. The larger
the number of clients trying to gain access to the system,
the more it is evident that every large system must be
capable of scaling both vertically and horizontally.

Vertical scaling is straightforward; increasing the number
of CPUs or available RAM can provide a way of improving
the system's productivity without modifying the software.
Modern server stations can reach significant capabilities in
their computational capacities, and the ceiling keeps getting
higher. Although, vertical scaling is still quite limited when it
comes to high-end, in-demand services such as AWS or
Google Cloud. In cases where millions or billions of potential
clients must be supported, vertical scaling is limited and will
not be sufficient (Ali, 2019).

Horizontal scaling, on the other hand, promises nearly
limitless growth potential where there are no commonly
shared bottlenecks. Distributed systems primarily rely on
such principles to provide both efficiency and availability
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through redundancy and coordination mechanisms. It
comes with the cost of having to establish a consensus
mechanism on a software level which is a non-trivial task
tackled from the dawn of the global interconnection era
(Ali, 2019; Millnert, & Eker, 2020).

With that, the Replica State Discovery Protocol serves
as a solution, providing basic simplified interfaces for
establishing a consistent and coordinated cluster
environment. The purpose of this protocol is to abstract
out the common steps required to aggregate a shared
state among multiple nodes. Firstly, such steps include
the discovery phase called “DEBATE”. Its purpose is to
introduce a node to the network by broadcasting its initial
configuration along with its identifier and network
address. As a result, every node after receiving such
notification will respond with its own configuration to
complete the discovery process. The following step
includes state derivation and consensus based on the
statuses received from the peers. After initial
aggregation, the nodes share their perspective with other
participants to achieve consensus. This essentially is a
security mechanism to avoid both accidental and
intentional discrepancies within the cluster state (Toliupa
et al., 2024; Kotov et al., 2024).
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Comparing RSDP with other coordination solutions like
Apache ZooKeeper and ETCD, the difference becomes
apparent (Junqueira, & Reed, 2013; Toasa et al., 2019;
Nalawala et al., 2022; Larsson et al., 2020). The said
services act as a central management layer distinct from the
operational plane. As such, they require additional
maintenance and resources tied to the deployment of the
control-plane servers. In contrast, RSDP is a lightweight
protocol that does not require deployment and management
of any additional infrastructure. In that regard, it is more
comparable to other consensus protocols such as Paxos
and Raft (Kirsch, & Amir, 2008; Hu, & Liu, 2020; Ni et al.,
2024). Though, a significant difference is that these
protocols serve as a solution to elect a single value within
the network, while RSDP, besides consensus as a final
stage, provides capabilities to establish complex state
derivation logic based on the available cluster perception.

RSDP itself is based on a layered model described
within its own dedicated articles. In essence, there are
application-level state reducers, a consensus layer, and
media access layers. This article primarily concentrates
on the first, but for completeness, we will briefly cover
other interaction layers. We've already described the
consensus layer and its operation principles above, when
discussing the steps the protocol engine takes to
exchange the information among nodes and establish a
consistent environment.

The communication media layer is primarily
responsible for providing two simple methods to the upper
layers: send to and broadcast. These could be
implemented in multifarious ways by leveraging existing
interconnection protocols for security or reliability. The
initial version of RSDP utilized the AMQP protocol and
RabbitMQ implementation to establish such operations.
AMQP is an asynchronous communication protocol based
on queues and provides complex message routing
capabilities for its clients. Though RSDP does not require
AMQP nor RabbitMQ, the same logic could be
implemented with simple HTTP requests or even based on
bare TCP connections, which in effect removes
dependency on any additional external services and
reduces complexities tied to their management.

Having said that, within this article, the aim is to
develop a set of coordinating state reducers in cases
where interval services rely upon the availability of external
servers. That is a quite common pattern nowadays, when
most applications are some sort of combination of external
tools. Such tools often implement their own security
policies to guarantee availability in the face of potential
DOS attacks. Hence, they implement various rate-limiting
strategies to stifle any potential malicious activities. On top
of that, it is quite common for such external services to
provide their internal state data as snapshots. For
example, some aggregates of financial or crypto-related
information on centralized exchanges have limited
historical availability or none.

In such cases it is important to establish data
redundancy techniques where multiple internal processes
within the controlled environment poll the external data
provider. In case one polling process fails, the other would
gather information successfully. Implementation of such
logic becomes quite complex since the external service
might impose rate-limiting restrictions, which necessitate
the creation of internal coordination logic to avoid violation
of such policies by a pool of uncoordinated parallel
execution entities.

The purpose of the article. The purpose of this
article is to provide examples of potential RSDP
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application within coordination-related problems. To do
so, we've chosen a commonly met problem while
designing a system requiring data redundancy and at the
same time relying on third-party servers. An architectural
description of such a case is provided with diagrams to
establish the necessary context. This paper presents
three state reducers providing functionality required to
establish a managed and compliant gathering of data
from an external limited source.

Starting with a directory-gathering reducer, responsible
for maintaining a real-time list of current cluster members.
As will be shown later, such a primitive operation is the
basis of most coordination-requiring tasks since, in order
to partition the task, a holistic view of the network is
required in most cases. Given that capability, we develop
a second state reducer tasked with timeframe division
among the nodes, allowing us to mitigate risks associated
with potential violation of security policies imposed by
external services. Lastly, we develop a rate-limit state
reducer responsible for maintaining a synchronized
configuration of remote security policy. Since that
configuration could be dynamic, we describe the
communication channels and methods that could be used
to keep the cluster state in a consistent manner.

Analysis of literary sources. Consensus and
coordination have been actively studied in numerous
works throughout the world and are extremely relevant
topics especially in context of emerging blockchain
technologies (Yaga et al.,, 2019). Nevertheless, the
category of state management methods that do not involve
external coordination plane remains an open area
requiring additional effort and discussion.

The description and evaluation of centralized coordination
methods based on ZooKeeper is done within works of
Junqueira, F., & Reed, B. (2013). Similarly, contribution
towards utilization of ETCD service and its capabilities are
provided within works of Nalawala, H. S. et al. (2022).

Studies of Paxos consensus protocol were conducted
within the works of Van Renesse, R., & Altinbuken, D.
(2015). Respectively, research on Raft consensus protocol
and its properties is described within papers of Hu, J.,
& Liu, K. (2020); Ni, L. et al. (2024).

Research on DDOS and its variations has been going
on since the early 2000s. Significant contributions within
the scope of taxonomy, detection and prevention methods
are provided by the works of Mirkovic, J., & Reiher, P.
(2004); Douligeris, C., & Mitrokotsa, A. (2004). Farther
improvement of protection models and methods are
discussed in Srivastava, A., et al. (2011). More recent
papers involving descriptions of using artificial intelligence
capabilities to detect DDOS attacks are done within works
of Zhang, B., Zhang, T., & Yu, Z. (2017).

The Replica State Discovery Protocol, its implementation
details, terminology and phases are described within the
works of Toliupa, S. et al. (2024). The media access layer
based on AMQP, its architecture, properties, and
characteristics are discussed in Kotov, M. S. et al. (2024).

Methods

Within the ambit of this research, a set of cluster state
reducers is described, providing basic coordination
capabilities, including the formation of a network
participants list and task division between them. Using
mathematical modeling, we describe the procedures
necessary for performing the said coordination tasks.
Implementation and testing of reducers are done with the
Node.js platform capable of running JavaScript code on
the server side. A theoretical analysis and description of
the proposed methods for distributed coordination are
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provided within this work to facilitate their integration into
modern systems.

Additionally, this paper provides a description of
coordination-requiring tasks related to the rate-limited
external services. The architectural model of the potential
clustered data-gathering solution is laid out and evaluated
using diagrams and mathematical notations. As we
propose new coordination methods based on RSDP's
reducer interface, we've described their potential
integration within the scope of such systems.

Results

The following section presents a description of the
proposed state reducers aimed at facilitating cluster
coordination. We will first start with the description of the
cluster requirements and the general architecture that could
be encountered in cases where there is a combination of
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external service, temporary availability of data, and rate-
limiting security policies in place. We will define the general
approach towards request limitation commonly done by
external service providers. In addition, a diagram of
architecture will be used to further clarify the setup.

Architecture of a system with external limited
dependencies. Let us start the discussion of results with the
definition of the target distributed system. Before proceeding
with the description of cluster state reducers, we will first
define the network topology and its constraints. We will
shortly discuss external security policies and their
implications while building data-gathering or synchronization
services for temporarily available aggregates.

The following Fig. 1 depicts the architecture of such a
system:

FPaolling request

e

External service

Fig. 1. Architecture of the target distributed system

This system is comprised of multiple synchronization
workers that form an RSDP cluster. Their main task is to
continuously poll data from an external service provider.
The conditions that make this task complex are as follows:

e The external service provides data aggregations
temporarily, meaning that historical reconciliation is impossible
since older records will not be available in the future.

e At the same time, the service has a security policy
that restricts incoming requests with a shared identifier
within a time window.

e Controlled service is supposed to minimize data
loss through any available means.

Hence, the architecture of a controlled network is
comprised of multiple duplicate polling processes allocated
on different machines or even availability zones. At every
collection period, all three must try to retrieve the data from
the target service. If one of them failed, the other would try
to save the records received.

Overall, the idea is to leverage redundancy to mitigate
potential risks associated with data loss. This is a typical
strategy met within many distributed systems.

In order to avoid data duplication inside the database,
the idempotency token could be used to check the
availability of the record. In the case of the described
system, polling interval start and interval end, along with
specific request type parameters, could be used as such
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tokens. Before inserting a new record in the database,
every worker would first look to see if there is already a
record stored with the mentioned field. To further
strengthen consistency guarantees, a unique constraint
policy could be implemented, which is commonly
supported in RDBM systems and other databases.

The problem arises due to the potential security
policies on the provider's side. Since rate limits block
excessive requests to the service, our task is to ensure that
all the parallel polling processes work in a coordinated way
to avoid violations and possible further restrictions. This
problem could be generalized to any type of access or work
with a shared resource. When multiple parallel actors try to
work on the same problem, coordination is required to
avoid inconsistent behavior.

Rate-limiting policies come in multiple variations but
could be generalized as an access sliding window. In that
case, the external service would define a number of
requests allowed within a specific timeframe. If that amount
is exceeded, the sender might be subjected to additional
restrictions or even a permanent ban from accessing the API
(Serbout et al., 2023; Firmani, Leotta, & Mecella, 2019).

To describe how such policies work, let us declare the
following:

e R € R*:maximum request rate (requests per second);

e T € R*: time window (in seconds);
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e N(t): number of requests made in interval [t - T, t];
e u(r)e{0,1} :unit impulse indicating a request at

time ¢.

e Now the constraint, or the rate limit condition could
be expressed as:

[l u(®dt<R-T, vteR" 1)

Equivalently, in discrete time (e.g., if requests occur at
discrete timestamps t;):

Let {t;}, € RY, t; < t;41. Now define the windowed
count:

N(t) = Xitg Ljer g (L), (2)
The rate limit condition could be expressed as:
Nt)< R-T. (3)

The acceptance function a(t;) € {0,1} could be defined as:

_(1if N(t;) < R ‘T,
a(t) = {0 if otherwise. “)

That being said, we can proceed with the definition of
coordination mechanisms capable of working with such
external constraints to avoid potential security incidents.

The state reducer interface notation. Before
proceeding with descriptions of the proposed state reducers,
we will first have to establish a mathematical notation basis
that will be used throughout these definitions.

Firstly, the cluster itself could be defined as a graph
Gouster = (V, E), with a set of replicas V = {vy, vy, ..., U}
and a set of directed edges E < V x V. In this network each
node has its own initial state s; used to later derive an
aggregated state s; along with incoming initial states from
in-neighbors V"~ (v;). The process could be defined as
follows (Toliupa et al., 2024):
Si* = faggstatus(si:{Mstatus(vj) | Vj € N_(Ui)}) (5)

Here, Mstams(v]-) represents an incoming message from
in-neighbor in response to initial My (v;). This message
could be then defined as Mstarus(v;) = (fia(v)), frneta(vi), ;)
We've additionally defined utility functions f;4(v;) that returns
a routable identifier for v; and fiea(v;) that returns meta
information about participating node (Toliupa et al., 2024).

Later, we will use s; = f,g0 saeus NOtation to describe every
subsequent state reducer aggregation function. Having said
that, let us proceed with the state reducers definition.

Cluster members state reducer. This reducer is one of
the most commonly used to resolve any coordination task.
That becomes apparent since, in order to distribute tasks
between participants, their complete list is required along with
the metadata, such as their capacity and capabilities.

The reducer could be described as follows:

s; = {fid(vj)'fmeta(vi)' silveN~(w)uy } (6)

Its implementation is quite simple but equips the
network with an important ability to discover peers.

Timeframe division state reducer. Now, when we
can get a list of network participants, we can create an
additional state reducer that is capable of dividing

st = (o) - rank (1) )

where, A ={fy(v;))Iv;eN" W)UV}, [Al is the
amount of node addresses registered within 4. Then
rank(fi4(v;), A) is a function that returns the position of
fia(v;) within a sorted set A for a given node v;.

AT =

where inverse of R basically represents how many
seconds a process should wait before it can issue another
request in compliance with the restriction policies.

This reducer could be farther improved to support
multiple parallel limitation scopes. Let's say that within the

s; = {(ﬂd(vj)'m . rank(ﬁd(vj), Cﬂ(fgroup(vj))))

where A(L) is now a function that returns a subset of
nodes belonging to a particular subset of A where each
member is associated with a label Ly. Here, fpou,(v;)
would return L, associated with v;.

With that setup it is now possible to distribute tasks
among nodes in several groups. Each group would have
its own isolated access context and would still be capable
of coordinating separately.

si ={fulvj) v € N~ Uwi }

where f;(v;) returns rate limit value observed at node v;.

The RSDP has undergone multiple iterations, some of
which perform popular vote decisions on aggregated
states. That implies that propagation of the rate limit value
should be done through side channels as shown in the
following Fig. 2.
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timeframes among nodes. Its implementation could be
farther augmented by introducing sharding categories, in
case there are multiple API keys, but the general approach
could be defined as:

Uj € N_(vi) U v; }, (7)

Also, AT is a synchronization period that could be
obtained either as a static configuration shared in the cluster,
or dynamically calculated based on rate limit as follows:

A - =, (8)

observed architecture there are multiple access keys, each
having its own dedicated rate limit policy and counter. In
that case, it would be more efficient to separate
coordination tasks in the following manner:

Uj € N_(Ui) U v; }, (9)

Rate limit state reducer. It is quite common for the R
value to be dynamic itself. These policies tend to get
updated over time due to the demand and capability
factors on the external service's side. Hence, one of the
key state reducers is responsible for maintaining this value
in a consistent manner:

(10)

Since a new value in such RSDP version would only be
accepted if most of nodes share it, without side channel
such propagation would be slow. Another approach is to
pass timestamp ¢ along with f,(v;) and make the state
derivation function find such f,(v;) that is associated with
the largest value t.
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Fig. 2. RSDP initial state updates propagation

Discussion and conclusions

While engineering a complex distributed system
requiring consensus among its subsystems or a set of
homogenous components, it's important to avoid
complexities related to the management of additional
infrastructure while still providing a required level of
consistency and availability. Having said that, the Replica
State Discovery Protocol provides essential lightweight
capabilities to resolve the said problem through the means
of its flexible state reducers system. RSDP is built with a
layered architecture in mind, capable of adjusting to the
particular needs of the network as shown in this paper. By
leveraging existing communication infrastructure and
avoiding redundant management layers, RSDP allows for
significantly reducing the computational complexity of
coordination as well as costs associated with hardware
needed for running a dedicated control plane. State
reducers described within this article provide basic
capabilities required for the most common coordination
tasks, including the construction of a participants directory,
task spliting and assignments, as well as consensus
regarding the configuration parameters.

Within this paper, we've covered a common architectural
problem we met while integrating with myriads of external
services. Since most SaaS platforms encounter spamming
and DoS problems, most utilize rate-limiting policies for each
connecting client. While mitigating availability risks on the
server's side, it significantly complicates data redundancy
techniques and distributed polling for clients, which require
coordination capabilities.

As such, the proposed state reducers provide all the
necessary information for running polling processes to both
retrieve the data and comply with external security
restrictions. The demonstrated reducers allow you to gain a
complete network view, starting with the participants list. The
list serves as basic information for more complex state
division among nodes. By knowing how many nodes there
are in the network and being able to dynamically adjust the
list according to their health or availability, it is possible to
construct more complex coordination methods. Hence, the
second state reducer, based on the list, divides the available
timeframes among the participants, allowing them to avoid
collisions and accidental bans from the target API. At the
same time, the third reducer provides a real-time
configuration for the available rate limit policy.
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Overall, the purpose of this article is to show examples
of RSDP's potential application in solving coordination-
related tasks. We've laid out the direction of the state
management capabilities available through RSDP interfaces
and their versatility. It is the intent of this paper to spark
further research into the application of RSDP's capabilities
in solving non-trivial tasks in contemporary parallelized
systems requiring access to a shared resource.

Author's contribution: Maksym Kotov — conceptualization,
methodology, formal analysis, development of software, analysis
of sources, preparation of a literature review and theoretical
foundations of research, editing and reviewing.

Sources of funding. This study did not receive any grant
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KuiBcbkui HauioHanbHUM yHiBepcuteT iMmeHi Tapaca LUeBueHka, KuiB, Ykpaina

PEQYKTOPU CTAHY AN KOOPOUHALYI KNACTEPA HA OCHOBI RSDP

B ¢ Ty n. Cy4acHi po3nodineHi cucmemu, 3a3euyali, sUKopucmoesyoms ckiadHi MepexHi monosoezii ma mexHosoeil éHympiwHbL020 38 'A3Ky onsi
BUKOHaHHS cknadHux ob64ucntosanbHux 3aedaHb. [locumb Yacmo maki cucmemu noknadarombcsi Ha yeHmparizoeaHy KOOpOuHauito, konu o0uH abo
2pyna npu3sHa4YeHUX cepeepie € MIIOWUHO yrpaesliHHa Ons eciei Mmepexi. Xo4a yeli nidxid Moxe cnpocmumu npoyec 00CsIi2HEHHSI KOHCEHCYCY, 8iH
8800umb dodamkoei auMo2u A0 NPoeKkmMyeaHHs1 ma o6cr1y208yeaHHs iHgppacmpykmypu. By3nu, siki € noujuHoro ynpaeniHHs, suMa2aromb 000amKosux
anapamHux pecypcie, a makox /Il00CbKUX 3ycusb i KoMnemeHuyii Ans ynpaeniHHs 308HiWHIMU ciyx6amu, 30amHumu Hadaeamu 6a3oei npumimueu
koopduHaujii. binbwicmeb eunadkie, w0 suMazarome KOHCEHCYCY, MOXHa 38ecmu A0 CrIpPoweHUx npoyedyp, makux siK 36ip iHgpopmauyil Npo yyacHukie
Mepexi ma po3nodin demepmiHoeaHux 3pizie cmaHy Mk Humu. Omike, enpoeadeHHsI CKaGHO20 KOOPOUHAaYiliHo20 pilleHHSs], sike eumMazae
dodamkoeso2o0 Memody 06ciy2o8yeaHHsl, Moxe 6ymu HeegekmueHuM. [Tpomokon eusieneHHs1 cmaHy penniku (RSDP) eucmynae sik "lightweight”
piweHHs1 Ons koopAuHauyii, wjo npedcmaernsie npocmutli iHmepgbelic 0nsi docsizHeHHs1 KOHCEHCYCY MiXK 8y3/1aMu y Knacmepi.

MeTopAau.Y mexax ybo20 docnidxeHHs1 onucaHo Habip pedykmopie cmaHy knacmepa, wo 3abesneyye 6a3oei Moxsueocmi koopOuHaui,
8KIIH0OYarOYU ¢hopMy8aHHsI CMUCKY y4acHUKie Mepexi ma po3nodin 3aedaHb MiX HUMU. 3a AONOMO20I0 MameMamu4Ho20 ModesTt08aHHs ONuUcaHo
npoyedypu, HeobxiOHi Onsl 8UKOHaHHS1 3a3HaYeHUX KOopOuHauiliHux 3aedaHb. BnpoeadxeHHs1 ma mecmyeaHHs1 pedyKmopie 8UKOHYyemMbCs 3a
donomozoro nnameopmu Node.js, 30amHoi 3anyckamu kod JavaScript Ha 6oyi cepeepa. TeopemuyHuii aHani3 i onuc nponoHoeaHux memodie
po3nodineHoi koopOuHayii npedcmaesneHo e yili po6omi Ans noneaweHHs ixHbOI iHMezpayii 8 cy4acHi cucmemu.

PesynbTaTtu. Y pesynbmami yb020 00CniOKeHHsI MU MPOMOHYEMO MpPuU HOo8UX pedyKmopu cmaHy knacmepa, siki ssienstomb coboro
mMemoodu 6a3oeux Moxnueocmeli koopAuHayil sik 3pa3koee 3acmocyeaHHsi RSDP. lMepwuli pedykmop eidnoeidae 3a 36ip kamasnoay ey3sie-
yuYacHukie y knacmepi ma ni@mpumky ixHix cmamycie Ha ocHogi ompumaHux daHux. [pyauli pedykmop euKoHye po3nodin 4acosux mepmiHie y
weudkocmi onucye 51o2iKy 0151 0ocsAi2HeHHSI KOHCEeHCYCcy u,000 eGUHO20 3Ha4YeHHsI, ike Mae 6ymu cninbHUM 0115 8ciei cucmemu, a makKoXx He2allHO
OHoesrveamucs 3a nompe6u.

BucHoBku. [1i0 yac npoekmyeaHHsi cknadHoi po3nodineHoi cucmemu, wo nompebye KoHceHcycy Mix ii nidcucmemamu abo Habopom
0OHOpPIGHUX KOMIMOHEHMIB, 8aXJIUBO YHUKamMu cknadHouwie, noe's3aHux 3 ynpaesiHHsM dodamkoeoro iHghpacmpykmyporo, 3abesneyyroyu eo0Ho4ac
Heob6XxidHull pieeHb y3200xeHocmi ma docmynHocmi. 38a)aro4u Ha ye, MPOIMOKOJ1 8UsIB/IEHHSI CMaHy penliku Hadae ea)uiuei noneaweHi Moxnueocmi
0n1s1 po3e‘A3aHHs 3a3HavyeHoi npobriemMu 3a AOMoOMO20H0 c80€i 2Hy4YKol cucmemu pedykmopie cmaHy. RSDP cmeopeHo 3 ypaxyeaHHsM 6a2amopieHesoi
apximekmypu, 30amHoi adanmyeamucsi 30 KOHKpemHux rnompe6 mepexi, sk rnokasaHo e yili cmammi. Bukopucmosyroyu HasieHy KOMYHikayilHy
iHgppacmpykmypy U yHuKaro4u Hadnuwkosux pigHie ynpaesiHHsi, RSDP do3eosnsie 3Ha4HO 3MeHWUMu 064ucnrosanbHy cknadHicmb KoopduHauii, a
makoX eumpamu, noe'a3aHi 3 anapamHum 3abe3ne4yeHHsIM, Heo6xiOHUM Ansi po6omu cneyianbHOI MIOWUHU ynpaeniHHA. PeAykmopu cmaHy, onucaxi e
yiti cmammi, Hadaromb 6a30ei MoxJ1ueocmi, Heob6XiOHi Onsi HalimowupeHiwux 3ae0aHb KOOPOUHaUil, 8K/TFOYalO4YU CIMEBOPEHHSI Kamaso2y y4YacHukKie,
po3rodin 3aedaHb i NPU3Ha4YeHHsI, a MaKOoX KOHCEeHCYC w000 napamempie KoHgi2ypayii.

KnwoyoBi cnoBa:po3nodineHi o64ucneHHs; y3200)KeHHs1 MPUCMPOIO; CUHXPOHI3ayis cmaHy; ynpaesiHHs1 knacmepamu; docmynHicmb
cepeicie; iHyudeHmu 6e3neku; NPOMOoOKos susierieHHs1 cmaHy peniku (RSDP); pedykmopu cmaHy knacmepa RSDP.

ABTOp 3asBrisie NPO BiACYTHICTb KOHMNIKTY iHTepeciB. CnoHcopy He Bpanu yvacTi B po3pobneHHi 4ocnimpkeHHs; y 36opi, aHanisi un
iHTepnpeTaLii A4aHuX; y HanuMcaHHi pyKonucy; B piLleHHi npo nybnikauito pe3ynbTaris.
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