RESEARCH OF DEVIATIONS PROACTIVE MANAGEMENT METHODS ON THE BASIS OF NEURAL NETWORKS IN IT PROJECTS
DOI:
https://doi.org/10.17721/ISTS.2019.1.79-87Keywords:
cloud technologies, distributed information systems systems, IT projects, project management, proactive management, information influences, interaction, change managementAbstract
This paper describes the results of a study of proposed methods of proactively managing key parameter deviations in complex projects based on the study of the effects of the external and internal environment of such projects. The methods of forecasting the level of changes in the results of project activity at any time during the execution of projects and depending on changes in the time parameters of the work of the projects and the study of the effects on changes in the cost of the work of the projects are proposed. Impact reactions on cost parameters and project timelines are investigated. An integrated information system has been developed to simulate the flow of changes to key IT project parameters using cloud data warehouses. In the process of modeling modern information technologies of project management of leading developers are involved and integrated. Modeling effects of the environment on project parameters based on models of deep learning neural networks are used as research tools. A model of deep learning of the neural network is proposed, through the experimental representation of the input and output data of numerical experiments. This model takes into account the optimistic and pessimistic distribution of the cost of each project when planning the projects and choosing their optimal configuration. The evaluation of the results of modeling the effects of changes on the timing and cost of performing work is based on the context of project characteristics, including resource allocations both in time and in project work, cost allocations, etc. Thus, the modeled indicators in the system indicate slight deviations within 10-15% of the set values under the influence of a wide range of values of environmental factors and their effects on changes in project work resources for the selected and unchanged technological configuration of the project model. Using proactive controls, in the re-simulation, it became possible to significantly reduce deviations in costs that do not exceed 10% of the deviation from the optimum values.Downloads
References
Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility, [Online]. Available: http://www.sciencedirect. com/science/article/pii/S0167739X08001957.
B. Furht, A. Escalante, Handbook of Cloud Computing, https://link.springer.com/book/10.1007/978-1-4419-6524-0.
A. Aлпатов, “Развитие распределенных технологий и систем”, Перспективы науки и образования, 2015, вып. 2 (14).
A. Kintonova, Z. Bakkaisha, A. Madina and E. Maikibaevaa, “Development of Distributed System for Electronic Business Based on Java-Technologies”. International journal of environmental & science education, Vol. 11, №. 10, p. 3861-3883, 2016.
N. Bessis, “Development of Distributed Systems from Design to Application and Maintenance”. Edge Hill University, UK, 2013.
C. Бушуєв, M. Дорош, “Формування інноваційних методів та моделей управління проектами на основі конвергенції”. Управління розвитком складних систем, №23, С. 30-37, 2015.
Н. Бушуєва, Моделі та методи проактивного управління програмами організаційного розвитку, [Посібник], К.: Науковий світ, 2007, 199 с.
V. Gogunskiy, K. Kolesnikova, D. Lukianov, “Lifelong learning is a new paradigm of personnel training in enterprises”, Eastern-European Journal of Enterprise Technologies. № 4/2 (82). pp. 4–10, 2016.
V. Morozov, O. Kalnichenko, I. Liubyma. „Proactive Project Management for Development of Distributed Information Systems”. Proceedings of the 4th International Scientific and Practical Conference “Problems of Infocommunications. Science and Technology” (PIC S&T-2017), Kharkiv, Ukraine, 2017.
Yu. Teslia, A. Khlevnyi, I. Khlevna. “Control of informational Impacts on project management”. Proceedings of the 1th IEEE International Conference on Data Stream Mining & Processing, 23-27 August. Lviv, Ukraine, 2016.
A. Biloshchytskyi, A. Kuchansky, Yu. Andrashko, S. Biloshchytska, O. Kuzka, Ye. Shabala, T. Lyashchenko, “A method for the identification of scientists' research areas based on a cluster analysis of scientific publications”. Eastern-European Journal of Enterprise Technologies, 5. – Vol. 2. – Issue 89. 4-10, 2017.
Проактивное управление проектами, [Online]. Available: http://www. itexpert.ru/rus/ITEMS/ 200810062247/.
P. Kenneth “Birman: Reliable Distributed Systems: Technologies”, Web Services, and Application, 2005
O. Maimon, L. Rokach, “Data Mining and Knowledge Discovery Handbook”, 2005, [Online]. Available: http://www.bookmetrix. com/detail/book/ae1ad394-f821- 4df2-9cc4-cbf8b93edf40.
М.С. Косяков, Вступ до розподілених обчислень, СПб: Інститут державних досліджень IST, 2014, 155 с.
A Guide to the Project Management Body of Knowledge (PMBOK®). Sixth Edition. – Delaware, Pennsylvania, Newton Square 19073-3299, USA: Project Management Institute Four Campus Boulevard, 2017, 586 p.
S. Warrilow. Change management: the horror of it all, Project Smart. 2010. [Online]. Available: https://www.projectsmart.co.uk/change-management-the horror-of-it-all.php.
W. Carsten, “Multi-agent System of IT Project Planning”, Proceedings of the 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Vol. 1, 21-23 September, Bucharest, 2017, pp. 548-553.
Leticia Fuentes Ardeo, Maria Aguilar, Jose Ramon Otegi Olaso. “The Project Knowledge Management: a key factor in the integration of Sustainability in Project Management”, Proceedings of International Research Conference at the Dortmund University of Applied Sciences and Arts, Dortmund, Germany, 30 June - 1 July, 2017, pp. 96-98.
Дж. Гараедаги. Системное мышление. Как управлять хаосом и сложными процессами. Платформа для моделирования архитектуры бизнеса, Минск: Гревцов Букс, 2010, 480 с.
E. Murray, I. Zakharova. Knowledge Management Success, Effectiveness Models, [Online]. Available: http://www.management.com.ua/strategy/str113.html
V. Morozov, O. Kalnichenko, S. Bronin, ”Development Of The Model Of The Proactive Approach in Creation Of Distributed Information Systems”, Eastern-European Journal of Enterprise Technologies, № 43/2 (94), pp. 6- 15, 2018.
Ю. Ю. Самохвалов, “Розробка методу прогнозування графа в умовах неповноти та неточності експертних оцінок”, Журнал "Кібернетика і системний аналіз", том. 54, №1, стор. 84-91, 2018.
Oracle's Primavera P6 Enterprise Project Portfolio Management, [Online]. Available: https://www.oracle.com/applications/primavera/products/project-portfolio-management/, last accessed 2019/03/25.
А. С. Новиков, А.А. Ежов, “Многослойная нейронная сеть Розенблатта и ее применение для решения задачи распознавания подписей”, Известия ТулГУ. Технические науки, 2016, № 2. С. 188-197.
В.И. Комашинский, Д.А. Смирнов Д.А., Нейронные сети и их применение в системах управления и связи, Горячая линия-Телеком, 2003, 94 c.
