COMPARATIVE ANALYSIS OF THE EFFECTIVENESS OF TELECOMMUNICATION NETWORK OVERLOAD DETECTION SCHEMES
DOI:
https://doi.org/10.17721/ISTS.2023.1.70-77Keywords:
telecommunication network, congestion forecasting, sensitivity function, gradient, neural system, queue management, prediction horizonAbstract
The scheme of congestion detection and regulation of input data flow based on the analysis of the sensitivity function of the telecommunication network performance is considered. The gradient of the sensitivity function characterizes the rate of change of this function and provides the optimal direction for adjusting the speed of the data source. To determine the sensitivity function, the use of a simple neural network model of a dynamic system is proposed. Determination of the gradient on the current value of the sign of the sensitivity function of the performance indicator is based on the algorithm of additive increase / multiple decrease. This algorithm is an alternative to the system of overload prediction and flow control, based on the control of the current value of the queue in comparison with a given threshold. The neural model for multi-step prediction of the queue state on the side of the telecommunication network receiver is considered. The results of comparative analysis of congestion control methods based on queue length analysis and sensitivity analysis with 1-step and 3-step horizons predicting network status are presented. The study was conducted for sinusoidal function of the narrow queue. It is shown that the key performance indicators for the sensitivity function-based scheme are better than for the queue length analysis scheme. The queue size-based scheme is more sensitive to changes in queue maintenance speed, and data source speed fluctuations are less sensitive for the sensitivity-based scheme. For systems based on sensitivity function analysis, a 3-step horizon predictor provides better performance and a smaller maintenance queue than a 1-step horizon scheme.Downloads
References
Tanenbaum, A. S., Andrew, S., & David, J. (2011). Wetherall. PrenticeHall, Cloth. 960 p.
Stallings, W. (2016). Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud. Pearson Education, Inc., OldTappan. New Jersey. 544 p.
Mao, G. (2017). Connectivity of Communication Networks Springer International Publishing AG. Springer. 435 p.
Виноградов, Н. А., Дрововозов, В. И., Лесная, Н. Н., & Зембицкая, А. С. (2006). Анализ нагрузки на сети передачи данных в системах критичного применения. Зв'язок, 1(61), 9–12.
Bonaventure, О. (2018). Computer Networking: Principles, Protocols and Practices, Release. cnp3book. 272 p.
Keshav, S. (1991). Congestion Control in Computer Networks [PhD Thesis University of California].
Kurose, J. F., & Keith, W. Ross. (2017). Computer Networking: A Top-Down Approach, 7th еd. Pearson Education, Inc. 864 p.
Göransson P., Black, C. Culver, T. (2017). Software Defined Networks: A Comprehensive Approach, 2nd ed. Morgan Kaufmann, US, 409 p.
Максимов, В. В., & Чмихун, С. О. (2014). Класифікація алгоритмів боротьби з перевантаженнями. Наукові записки Українського науково-дослідного ін-ту зв'язку, 5(33), 73–79.
Максимов В. В., & Чмихун, С. О. (2015). Дослідження алгоритму боротьби з перевантаженнями TCP VENO. Телекомунікаційні та інформаційні технології, 4, 30–36.
Торошанко, Я. І. (2016). Аналіз чутливості систем масового обслуговування на основі моделі адаптації і регулювання зовнішнього трафіка. Вісник Хмельницького нац. ун-ту, 6(243), 171–175.
Vinogradov, N., Stepanov, N., Toroshanko, Y., Cherevyk, V., Savchenko, А., Hladkykh, O., Toroshanko, V., & Uvarova, Т. (2019). Development of the method to control telecommunication network congestion based on a neural model. Eastern European journal of advanced technologies, 2(9), 67–73.
Zhaoming, L., Pan, Q., & Wang, L. (2016, December 9). Overload Control for Signaling Congestion of Machine Type Communications in 3GPP Networks.Xiangming WenPLOS ONE. 11 p.
Гладких, В. М., & Торошанко О. С. (2017). Ієрархічна маршрутизація з балансуванням навантаження в сенсорних мережах. Вісник Національного ун-ту "Львівська політехніка": Радіоелектроніка та телекомунікації, 885, 68–75.
Климаш, М. М., Стрихалюк, Б. М., & Кайдан, М. В. (2010). Тензорне подання алгоритмів маршрутизації. Зв'язок, 1, 33–35.
