Fast fourier transform in ofdm: algorithmic approaches and their role in information technologies

Authors

DOI:

https://doi.org/10.17721/ISTS.2025.9.81-92

Keywords:

Orthogonal Frequency Division Multiplexing (OFDM), Fast Fourier Transform (FFT), Information Systems, Bit Error Rate (BER), Field-Programmable Gate Array (FPGA)

Abstract

Background. Orthogonal Frequency Division Multiplexing (OFDM) is a key technology in modern information systems and is widely used in mobile networks such as 4G and 5G, the IEEE 802.11 standard (Wi-Fi), and digital television (DVB-T). The increase in the communication channel bandwidth requires an optimal selection of signal transformation parameters for efficient use of the hardware resources of Field-Programmable Gate Arrays (FPGA) in the implementation of OFDM.
Methods. The following methods were used: modeling of an OFDM-based communication system in the Simulink environment, which allowed for the study of signal processing transformations, as well as the analysis of the bit error rate (BER) for different modulation parameters. The implementation of FFT algorithms was carried out using HDL coding to compare the efficiency of the Fast Fourier Transform (FFT) algorithms Streaming Radix-2² and Burst Radix-2.
Results. Simulation results showed that using signal resampling at the transmitter improves the channel energy efficiency, reducing the required power level by 12 dB. The relationship between the bit error rate and the signal-to-noise ratio (SNR) demonstrates that increasing the FFT length from 512 to 2048 points requires a 6 dB increase in the SNR. The analysis of the cyclic prefix (CP) impact showed that the optimal CP length is 1/16 of the OFDM symbol, which reduces transmission speed losses. The effect of modulation on the bit error rate (BER) indicates the need for increased power when transitioning to higher-order Quadrature Amplitude Modulation (QAM).
Conclusions. It was concluded that the parameters of FFT and signal resampling are critical for the efficiency of the OFDM system. The results obtained can be used to optimize the implementation of OFDM on FPGA.

Downloads

Download data is not yet available.

References

Бойко, Ю., Єрьоменко, О., & Гур'єв, О. (2023). Можливості LDPC-кодів у підвищенні продуктивності оптичних телекомунікацій з OFDM. Measuring and computing devices in technological processes, 4, 13–26. https://doi.org/10.31891/2219-9365-2023-76-2

Бойко, Ю., Єрьоменко, О., & Пятін, І. (2024). Оцінка частотно-фазових спотворень в оптичних телекомунікаціях з OFDM. Інфокому- нікаційні технології та електронна інженерія, 4(2), 130–140. https://doi.org/10.23939/ictee2024.02.130

Бойко, Ю., Пятін, І., Єрьоменко, О., & Шаюк, Д. (2022). Оцінювання впливу зміщення несучих частот на завадостійкість телекомунікацій з OFDM. Measuring and computing devices in technological processes, 3, 19–26. https://doi.org/10.31891/2219-9365-2022-71-3-3

Бойко Ю. М., & Новіков Д. В. (2021). Оцінка ефективності канального кодування у телекомунікаціях з OFDM. Herald of Khmelnytskyi National University. Technical sciences, 5(301), 150–159. https://www.doi.org/10.31891/2307-5732-2021-301-5-150-159

Algnabi, Y. S., Teymourzadeh, R., Othman, M., & Islam, M. S. (2018). FPGA Implementation of pipeline Digit-Slicing Multiplier-Less Radix 2 power of 2 DIF SDF Butterfly for Fourier Transform Structure. Signal Processing. https://doi.org/10.48550/arXiv.1806.04570

Alqahtani, A. S., Pandiaraj, S., Alshmrany, S. Ali Jaber A., Sandeep P. & U. Arun K. (2024). Enhancing MIMO-OFDM channel estimation in 5G and beyond with conditional self-attention generative adversarial networks. Wireless Networks, 30, 1719–1736. https://doi.org/10.1007/s11276-023-03615-y

Ayhan, T., Dehaene, W., & Verhelst, M. (2014). A 128:2048/1536 Point FFT Hardware Implementation with Output Pruning. In European Signal Processing Conference (EUSIPCO) (pp. 1–5). Isola delle Femmine – Palermo. https://www.eurasip.org/Proceedings/Eusipco/Eusipco2014/HTML/papers/1569925329.pdf

Kakkad, Y., Patel, D. K., Kavaiya, S., Sun, S. & López-Benítez, M. (2023). Optimal 3GPP Fairness Parameters in 5G NR Unlicensed (NR-U) and WiFi Coexistence. IEEE Transactions on Vehicular Technology, 72(4), 5373–5377. https://ieeexplore.ieee.org/document/9954188

Kleider, J. E., Maalouli, G., Gifford, S., & Chuprun, S. (2005). Preamble and embedded synchronization for RF carrier frequency-hopped OFDM. IEEE Journal on Selected Areas in Communications, 23(5), 920–931. https://ieeexplore.ieee.org/document/1425638

Kishore, K. K., Suman, J. V., Mallam, M., Hema, M., & Guntreddi, V. (2024). Scrambled UFMC and OFDM Techniques With APSK Modulation in 5G Networks Using Particle Swarm Optimization. IEEE Access, 12, 104091–104101. https://doi.org/10.1109/ACCESS.2024.3421311

Kumar, V. M., Selvakumar, D. A., & Sobha, P. M. (2015). Area and frequency optimized 1024 point Radix-2 FFT processor on FPGA. In IEEE International Conference on VLSI-SATA (pp. 1–6). Bengaluru, India. https://ieeexplore.ieee.org/document/7050487

Lalitha, H. & Kumar, N. (2024). Carrier frequency synchronization for WLAN systems based on MIMO-OFDM-IM. EURASIP Journal on Wireless Communications and Networking, 77, (2024). https://doi.org/10.1186/s13638-024-02406-z

Liu, J. & He, J. (2024). Design and analysis of CP-free OFDM PDMA transmission system. EURASIP Journal on Advances in Signal Processing, 68, (2024). https://doi.org/10.1186/s13634-024-01154-y

Meenalakshmi, M., Chaturvedi, S. & Dwivedi, V. K. (2024). Enhancing channel estimation accuracy in polar-coded MIMO–OFDM systems via CNN with 5G channel models. AEU - International Journal of Electronics and Communications, 173, 155016. https://doi.org/10.1016/j.aeue.2023.155016

Qiao, S., Wang, H., Zhao, C., & Zhang, T. (2021). BER enhanced receiver for PHO-OFDM-based optical wireless communications. Physical Communication, 47, 101350. https://doi.org/10.1016/j.phycom.2021.101350

Shamani, F., Shamani F., Airoldi R., Fakour V,Tapani A., & Nurmi J. (2016). FPGA Implementation Issues of a Flexible Synchronizer Suitable for NC-OFDM-Based Cognitive Radios. Journal of Systems Architecture, 76, 102–116. https://doi.org/10.1016/j.sysarc.2016.11.006

Shammaa, M., Mashaly, M., & El-mahdy, A. (2024). The Use of Deep Learning Techniques in OFDM Receivers for 5G NR: A Survey. Procedia Computer Science, 231, 32–39. https://doi.org/10.1016/j.procs.2023.12.154

Srinivasa, R. M., Madhumati, G. L., & Sailaja, M. (2024). An area efficient 64 point Radix-42 MDC FFT architecture for OFDM applications. Integration, 99, 102244. https://doi.org/10.1016/j.vlsi.2024.102244

Zegrar, S. E., & Arslan, H. (2022). Common CP-OFDM Transceiver Design for Low-Complexity Frequency Domain Equalization. IEEE Wireless Communications Letters, 11(7), 1349–1353. https://ieeexplore.ieee.org/document/9756521

Zhurakovskiy, B., Boiko, J., Druzhynin, V., & Pyatin, I. (2023). Performance Analysis of Concatenated Coding for OFDM Under Selective Fading Conditions. CEUR Workshop Proceedings, 3624, 403–413. https://ceur-ws.org/Vol-3624/Paper_33.pdf.

Published

2025-08-29

Issue

Section

Information systems and technologies

How to Cite

Fast fourier transform in ofdm: algorithmic approaches and their role in information technologies. (2025). Information Systems and Technologies Security, 1(9), 81-92. https://doi.org/10.17721/ISTS.2025.9.81-92