
Безпека інформаційних систем і технологій № 1(2), 2020

Lishchytovych А., Pavlenko V., Shmatok A., Finenko Yu., 2020

50

DOI: https://doi.org/10.17721/ISTS.2020.1.50-59
УДК 004.8, 004.62, 004.93

COMPARATIVE ANALYSIS OF SYSTEM LOGS AND STREAMING DATA
ANOMALY DETECTION ALGORITHMS

Andriy Lishchytovych 1 Volodymyr Pavlenko 2
orcid.org/0000-0002-3395-8616 orcid.org/0000-0002-3958-0415

Alexander Shmatok 3 Yuriy Finenko 4

orcid.org/0000-0002-3351-2745 orcid.org/0000-0003-1887-2475

1 Kyiv, Ukraine, The Open International University of human development “Ukraine”, AL@sors.me
2 Kyiv, Ukraine, The Open International University of human development “Ukraine”, Pavlenko.v@i.ua
3 Kyiv, Ukraine, The Open International University of human development “Ukraine”, sh_al_st@ukr.net

4 Kyiv, Ukraine, The Open International University of human development “Ukraine”, talaveryuriy@gmail.com

Історія статті:

Надійшла до редакції 21.07.2019

Прийнято 29.07.2019

Ключові слова:

виявлення аномалій;

системні журнали;

дерево прийняття рішень;
 кластеризація;

аналіз даних;

ієрархічна часова пам’ять

Анотація: У цьому документі подано опис та порівняльний аналіз

декількох загальноприйнятих підходів до аналізу системних журналів та

потокових даних, що масово генеруються ІТ-інфраструктурою компанії, та

виявленню аномалій. Важливість виявлення аномалії продиктована

зростаючими витратами у випадку простою системи через події, які могли

б бути передбачені на основі записів журналу з попереджувальними

даними. Системи виявлення аномалій побудовані за допомогою

стандартного процесу збору даних, аналізу, вилучення інформації та

виявлення відхилень. Виявлення аномальної поведінки системи відіграє

важливу роль у масштабних системах управління інцидентами. Своєчасне

виявлення дозволяє ІТ-адміністраторам швидко виявити проблеми та

негайно їх вирішити. Такий підхід значно скорочує час простою системи.

Більшість ІТ-систем генерують журнали з детальною інформацією про

операції. Тому журнали стають ідеальним джерелом даних рішень

виявлення аномалії. Обсяг журналів унеможливлює їх аналіз вручну та

вимагає автоматизованих підходів.Більша частина документа стосується

кроку виявлення аномалії та таких алгоритмів, як регресія, дерево рішень,

SVM, кластеризація, аналіз основних компонентів, видобуток інваріантів та

ієрархічна модель тимчасової пам'яті. Алгоритми пошуку аномалії, що

базуються на моделях, та ієрархічні алгоритми тимчасової пам'яті

використовувались для обробки наборів даних HDFS, BGL та NAB з ~16

млн. повідомленнями журналу та ~365 тис. точками потокових даних. Дані

були вручну позначені мітками, щоб дозволити навчання моделей та

розрахунок точності їх роботи. Відповідно до результатів, системи

контрольованого виявлення аномалій досягають високої точності, але

потребують значних зусиль для тренувань моделей, тоді як алгоритм на

основі HTM моделі показує найвищу точність виявлення при відсутності

тренування.

Abstract: This paper provides with the description, comparative analysis of

multiple commonly used approaches of the analysis of system logs, and

streaming data massively generated by company IT infrastructure with an

unattended anomaly detection feature. An importance of the anomaly detection is

dictated by the growing costs of system downtime due to the events that would

have been predicted based on the log entries with the abnormal data reported.

Anomaly detection systems are built using standard workflow of the data

collection, parsing, information extraction and detection steps. Most of the

document is related to the anomaly detection step and algorithms like regression,

decision tree, SVM, clustering, principal components analysis, invariants mining

and hierarchical temporal memory model. Model-based anomaly algorithms and

hierarchical temporary memory algorithms were used to process HDFS, BGL

and NAB datasets with ~16m log messages and 365k data points of the

streaming data. The data was manually labeled to enable the training of the

models and accuracy calculation. According to the results, supervised anomaly

detection systems achieve high precision but require significant training effort,

while HTM-based algorithm shows the highest detection precision with zero

mailto:AL@sors.me

Безпека інформаційних систем і технологій № 1(2), 2020

Lishchytovych А., Pavlenko V., Shmatok A., Finenko Yu., 2020

51

training. Detection of the abnormal

system behavior plays an

important role in large-scale

incident

management systems. Timely detection allows IT administrators to quickly

identify issues and resolve them immediately. This approach reduces the system

downtime dramatically.Most of the IT systems generate logs with the detailed

information of the operations. Therefore, the logs become an ideal data source of

the anomaly detection solutions. The volume of the logs makes it impossible to

analyze them manually and requires automated approaches.

1. INTRODUCTION
Modern enterprises utilize large scale networks,

including hybrids where cloud and on-premise items

are connected into the single mesh. These systems

are in use as the core part of IT, supporting different

services – e-commerce, social networks, search

engines and knowledge bases. IT infrastructure is

designed to work 24/7 serving huge number of users

globally. Any issues with this system will break

down company services and lead to significant

revenue loss.

Detection of the abnormal system behavior plays

an important role in large-scale incident

management systems. Timely detection allows IT

administrators to quickly identify issues and resolve

them immediately. This approach reduces the system

downtime dramatically.

Most of the IT systems generate logs with the

detailed information of the operations. Therefore,

the logs become an ideal data source of the anomaly

detection solutions. The volume of the logs makes it

impossible to analyze them manually and requires

automated approaches.

This paper provides the review of multiple

anomaly detection algorithms with the evaluation of

their efficiency.

2. ANOMALY DETECTION WORKFLOW
AND ALGORITHMS

Common log-based anomaly detection systems

are built using the following workflow:

Collection step provides the ways to gather logs

information and put it into the common storage.

Outcome of the logs parsing is structured

timestamped events stream. At this stage some

additional information could be also extracted in

case of stable logs structure. To use the machine

learning models information has to be transformed

into the numerical form so called feature vectors.

Every event becomes the vector and all the vectors

are event matrix. Having the matrix, machine

learning algorithms could be used to identify

patterns and detect any anomalies.

Let’s define an anomaly as a point in time where

the behavior of the system is unusual and

significantly different from previous, normal

behavior. An anomaly may signify a negative

change in the system, like a fluctuation in the turbine

rotation frequency of a jet engine, possibly

indicating an imminent failure. An anomaly can also

be positive, like an abnormally high number of web

clicks on a new product page, implying stronger than

normal demand. Either way, anomalies in data

identify abnormal behavior with potentially useful

information. Anomalies can be spatial, where an

individual data instance can be considered

anomalous with respect to the rest of data,

independent of where it occurs in the data stream.

The description of the workflow steps and

algorithms are described in [1].

3. LOG PARSING
Logs are plain text that consists of constant parts

and variable parts, which may vary among different

occurrences. For instance, given the logs of

“Connection from 10.10.34.12 closed” and

“Connection from 10.10.34.13 closed”, the words

“Connection”, “from” and “closed” are considered

as constant parts because they always stay the same,

while the remaining parts are called variable parts as

they are not fixed. Constant parts are predefined in

source codes by developers, and variable parts are

often generated dynamically (e.g., port number, IP

address) that could not be well utilized in anomaly

detection. The purpose of log parsing is to separate

constant parts from variable parts and form a well-

Fig. 1 - Anomaly detection system workflow

Безпека інформаційних систем і технологій № 1(2), 2020

Lishchytovych А., Pavlenko V., Shmatok A., Finenko Yu., 2020

52

established log event (i.e., “Connection from *

closed” in the example). There are two types of log

parsing methods: clustering based (e.g., LKE [5],

LogSig [15]) and heuristic-based (e.g., iPLoM [11],

SLCT [16]). In clustering-based log parsers,

distances between logs are calculated first, and

clustering techniques are often employed to group

logs into different clusters in the next step. Finally,

event template is generated from each cluster. For

heuristic-based approaches, the occurrences of each

word on each log position are counted. Next,

frequent words are selected and composed as the

event candidates. Finally, some candidates are

chosen to be the log events.

4. FEATURE EXTRACTION
The main purpose of this step is to extract

valuable features from log events that could be fed

into anomaly detection models. The input of feature

extraction is log events generated in the log parsing

step, and the output is an event count matrix. In

order to extract features, we firstly need to separate

log data into various groups, where each group

represents a log sequence. To do so, windowing is

applied to divide a log dataset into finite chunks [3].

Fixed window. Both fixed windows and sliding

windows are based on timestamp, which records the

occurrence time of each log. Each fixed window has

its size, which means the time span or time duration

(the window size is ∆t, which is a constant value,

such as one hour or one day). Thus, the number of

fixed windows depends on the predefined window

size. Logs that happened in the same window are

regarded as a log sequence.

Sliding window. Different from fixed windows,

sliding windows consist of two attributes: window

size and step size, e.g., hourly windows sliding

every five minutes. In general, step size is smaller

than window size, therefore causing the overlap of

different windows. The number of sliding windows,

which is often larger than fixed windows, mainly

depends on both window size and step size. Logs

that occurred in the same sliding window are also

grouped as a log sequence, though logs may

duplicate in multiple sliding windows due to the

overlap.

Session window. Compared with the above two

windowing types, session windows are based on

identifiers instead of the timestamp. Identifiers are

utilized to mark different execution paths in some

log data. For instance, HDFS logs with block_id

record the allocation, writing, replication, deletion of

certain block. Thus, we can group logs according to

the identifiers, where each session window has a

unique identifier. After constructing the log

sequences with windowing techniques, an event

count matrix X is generated. In each log sequence,

we count the occurrence number of each log event to

form the event count vector. For example, if the

event count vector is [0, 0, 2, 3, 0, 1, 0], it means

that event 3 occurred twice and event 4 occurred

three times in this log sequence. Finally, plenty of

event count vectors are constructed to be an event

count matrix X, where entry X(i,j) records how

many times the event j occurred in the i-th log

sequence.

5. SUPERVISED ANOMALY DETECTION
Supervised learning (e.g., decision tree) is

defined as a machine learning task of deriving a

model from labeled training data. Labeled training

data, which indicate normal or anomalous state by

labels, are the prerequisite of supervised anomaly

detection. The more labeled the training data, the

more precise the model would be. We will introduce

three representative supervised methods: logistic

regression, decision tree, and support vector

machine (SVM) in the following.

6. LOGISTIC REGRESSION
Logistic regression is a statistical model that has

been widely-used for classification. To decide the

state of an instance, logistic regression estimates the

probability p of all possible states (normal or

anomalous). The probability p is calculated by a

logistic function, which is built on labeled training

data. When a new instance appears, the logistic

function could compute the probability p, p∈(0,1) of

all possible states. After obtaining the probabilities,

the states with the largest probability is the

classification output. To detect anomalies, an event

count vector is constructed from each log sequence,

and every event count vector together with its label

are called an instance. Firstly, we use training

instances to establish the logistic regression model,

which is actually a logistic function. After obtaining

the model, we feed a testing instance X into the

logistic function to compute its possibility p of

anomaly, the label of X is anomalous when p≥0.5

and normal otherwise.

7. DECISION TREE
Decision Tree is a tree structure diagram that

uses branches to illustrate the predicted state for

each instance. The decision tree is constructed in a

top-down manner using training data. Each tree node

Fig. 2 -Decision Tree

Безпека інформаційних систем і технологій № 1(2), 2020

Lishchytovych А., Pavlenko V., Shmatok A., Finenko Yu., 2020

53

is created using the current “best” attribute, which is

selected by attribute’s information gain [6]. For

example, the root node in Figure 2 shows that there

are totally 20 instances in our dataset. When splitting

the root node, the occurrence number of Event 2 is

treated as the “best” attribute. Thus, the entire 20

training instances are split into two subsets

according to the value of this attribute, in which one

contains 12 instances and the other consists of 8

instances.

Decision Tree was first applied to failure

diagnosis for web request log system in [4]. The

event count vectors together with their labels

described in Section III-B are utilized to build the

decision tree. To detect the state of a new instance, it

traverses the decision tree according to the

predicates of each traversed tree node. In the end of

traverse, the instance will arrive one of the leaves,

which reflects the state of this instance.

8. SUPPORT VECTOR MACHINE

Support Vector Machine (SVM) is a supervised

learning method for classification. In SVM, a

hyperplane is constructed to separate various classes

of instances in high-dimension space. Finding the

hyperplane is an optimization problem, which

maximizes the distance between the hyperplane and

the nearest data point in different classes.

In [8], Liang et al. employ SVM to detect failures

and compared it with other methods. Similar to

Logistic Regression and Decision Tree, the training

instances are event count vectors together with their

labels. In anomaly detection via SVM, if a new

instance is located above the hyperplane, it would be

reported as an anomaly, while marked as normal

otherwise. In this paper, we only discuss linear

SVM.

9. UNSUPERVISED ANOMALY
DETECTION

Unlike supervised methods, unsupervised

learning is another common machine learning task

but its training data is unlabeled. Unsupervised

methods are more applicable in real-world

production environment due to the lack of labels.

Common unsupervised approaches include various

clustering methods, association rule mining, PCA

and etc.

10. LOG CLUSTERING

In [9], Lin et al. design a clustering-based method

called Log Cluster to identify online system

problems. Log Cluster requires two training phases,

namely knowledge base initialization phase and

online learning phase. Thus, the training instances

are divided into two parts for these two phases,

respectively.

Knowledge base initialization phase contains

three steps: log vectorization, log clustering,

representative vectors extraction. Firstly, log

sequences are vectorized as event count vectors,

which are further revised by Inverse Document.

Frequency (IDF) [14] and normalization. Secondly,

Log Cluster clusters normal and abnormal event

count vectors separately with agglomerative

hierarchical clustering, which generates two sets of

vector clusters (i.e., normal clusters and abnormal

clusters) as knowledge base. Finally, we select a

representative vector for each cluster by computing

its centroid.

Online learning phase is used to further adjust the

clusters constructed in knowledge base initialization

phase. In online learning phase, event count vectors

are added into the knowledge base one by one.

Given an event count vector, the distances between

it and existing representative vectors are computed.

If the smallest distance is less than a threshold, this

event count vector will be added to the nearest

cluster and the representative vector of this cluster

will be updated. Otherwise, Log Cluster creates a

new cluster using this event count vector. After

constructing the knowledge base and complete the

online learning process, Log Cluster can be

employed to detect anomalies. Specifically, to

determine the state of a new log sequence, we

compute its distance to representative vectors in

knowledge base. If the smallest distance is larger

than a threshold, the log sequence is reported as an

anomaly. Otherwise, if the nearest cluster is a

normal/an abnormal cluster, the log sequence is

reported as normal/abnormal.

11. PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a

statistical method that has been widely used to

conduct dimension reduction. The basic idea behind

PCA is to project high-dimension data (e.g., high-

Fig. 3 -Log Cluster anomaly detection

Безпека інформаційних систем і технологій № 1(2), 2020

Lishchytovych А., Pavlenko V., Shmatok A., Finenko Yu., 2020

54

dimension points) to a new coordinate system

composed of principal components (i.e.,

dimensions), where is set to be less than the

original dimension. PCA calculates the principal

components by finding components (i.e., axes)

which catch the most variance among the high-

dimension data. Thus, the PCA-transformed low-

dimension data can preserve the major

characteristics (e.g., the similarity between two

points) of the original high-dimension data. For

example, in Figure 3, PCA attempts to transform

two-dimension points to the one-dimension points.

Sn is selected as the principal component because the

distance between points can be best described by

mapping them to Sn

PCA was first applied in log-based anomaly

detection [17]. In their anomaly detection method,

each log sequence is vectorized as an event count

vector. After that, PCA is employed to find patterns

between the dimensions of event count vectors.

Employing PCA, two subspaces are generated,

namely normal space Sn and anomaly space Sa. Sn

is constructed by the first k principal components

and Sn is constructed by the remaining (n-k), where

n is the original dimension. Then, the projection ya

=(1-PPT)y of an event count vector y to Sa is

calculated, where p=[v1, v2, v3 ,…, vn] is the first k

principal components. If the length of ya is larger

than a threshold, the corresponding event count

vector will be reported as an anomaly. For example,

the selected point in Figure 3 is an anomaly because

the length of its projection on Sa is too large

12. INVARIANTS MINING
Program Invariants are the linear relationships

that always hold during system running even with

various inputs and under different workloads.

Invariants mining was first applied to log-based

anomaly detection in [10]. Logs that have the same

session id (e.g., block_id in HDFS) often represent

the program execution flow of that session.

In this execution flow, the system generates a log

message at each stage from A to G. Assuming that

there are plenty of instances running in the system

and they follow the program execution flow in

Figure 4, the following equations would be valid:

where n (∗) represents the number of logs which

belong to corresponding event type ∗. Intuitively,

Invariants mining could uncover the linear

relationships between multiple log events that

represent system normal execution behaviors. Linear

relationships prevail in real-world system events.

For example, normally, a file must be closed after it

was opened. Thus, log with phrase “open file” and

log with phrase “close file” would appear in pair. If

the number of log events “open file” and that of

“close file” in an instance are not equal, it will be

marked abnormal because it violates the linear

relationship. Invariants mining, which aims at

finding invariants (i.e., linear relationships), contains

three steps. The input of invariants mining is an

event count matrix generated from log sequences,

where each row is an event count vector. Firstly, the

invariant space is estimated using singular value

decomposition, which determines the amount r of

invariants that need to be mined in the next step.

Secondly, this method finds out the invariants by a

brute force search algorithm. Finally, each mined

invariant candidate is validated by comparing its

support with a threshold (e.g., supported by 98% of

the event count vectors). This step will continue

until r independent invariants are obtained. In

anomaly detection based on invariants, when a new

log sequence arrives, we check whether it obey the

invariants. The log sequence will be reported as an

anomaly if at least one invariant is broken.

13. TOOL IMPLEMENTATION
[1] implemented six anomaly detection methods

in Python with over 4,000 lines of code and

packaged them as a toolkit. For supervised methods,

[1] utilizes a widely-used machine learning package,

scikit-learn [13], to implement the learning models

of Logistic Regression, Decision Tree, and SVM.

There are plenty of parameters in SVM and

logistic regression, and we manually tune these

parameters to achieve the best results during

training. For SVM, we tried different kernels and

related parameters one by one, and we found that

SVM with linear kernel obtains the better anomaly

detection accuracy than other kernels. For logistic

regression, different parameters are also explored,

Fig. 4 - Principal Component Analysis

Безпека інформаційних систем і технологій № 1(2), 2020

Lishchytovych А., Pavlenko V., Shmatok A., Finenko Yu., 2020

55

and they are carefully tuned to achieve the best

performance.

Implementing unsupervised methods, however, is

not straightforward. For log clustering, [1] were not

able to directly use the clustering API from scikit-

learn, because it is not designed for large-scale

datasets, where our data cannot fit to the memory.

We implemented the clustering algorithm into an

online version, whereby each data instance is

grouped into a cluster one by one. There are multiple

thresholds to be tuned. We also paid great efforts to

implement the invariants mining method, because

we built a search space for possible invariants and

proposed multiple ways to prune all unnecessary

invariants. It is very time-consuming to test different

combination of thresholds. [1] finally implemented

PCA method according to the original reference

based on the use of an API from scikit-learn. PCA

has only two parameters and it is easy to tune.

14. SUPERVISED METHODS
EXPERIMENTAL DATASETS

Log Datasets. Publicly available production logs

are scarce data because companies rarely publish

them due to confidential issues. Fortunately, by

exploring an abundance of literature and intensively

contacting the corresponding authors, [1] has

successfully obtained two log datasets, HDFS data

[17] and BGL data [12], which are suitable for

evaluating existing anomaly detection methods.

Both datasets are collected from production systems,

with a total of 15,923,592 log messages and 365,298

anomaly samples, that are manually labeled by the

original domain experts. Thus, [1] took these labels

(anomaly or not) as the ground truth for accuracy

evaluation purposes. More statistical information of

the datasets is provided in Table I. HDFS data

contain 11,175,629 log messages, which were

collected from Amazon EC2 platform [17]. HDFS

logs record a unique block ID for each block

operation such as allocation, writing, replication,

deletion. Thus, the operations in logs can be more

naturally captured by session windows, as

introduced in III-B, because each unique block ID

can be utilized to slice the logs into a set of log

sequences. Then we extract feature vectors from

these log sequences and generate 575,061 event

count vectors. Among them, 16,838 samples are

marked as anomalies.

BGL data contain 4,747,963 log messages, which

were recorded by the Blue Gene supercomputer

system at Lawrence Livermore National Labs

(LLNL) [12]. Unlike HDFS data, BGL logs have no

identifier recorded for each job execution. Thus, we

have to use fixed windows or sliding windows to

slice logs as log sequences, and then extract the

corresponding event count vectors. But the number

of windows depends on the chosen window size

(and step size). In BGL data, 348,460 log messages

are labeled as failures, and a log sequence is marked

as an anomaly if any failure logs exist in that

sequence

15. SUPERVISED METHODS ACCURACY
RESULTS

To explore the accuracy of supervised methods,

we use them to detect anomalies on HDFS data and

BGL data. [1] uses session windows to slice HDFS

data and then generate the event count matrix, while

fixed windows and sliding windows are applied to

BGL data separately. In order to check the validity

of three supervised methods (namely Logistic

Regression, Decision Tree, SVM), we first train the

models on training data, and then apply them to

testing data. [1] reports both training accuracy and

testing accuracy in different settings, as illustrated in

Tables 1 - 4. We can observe that all supervised

methods achieve high training accuracy (over 0.95),

which implies that normal instances and abnormal

instances are well separated by using our feature

representation. However, their accuracy on testing

data varies with different methods and datasets. The

overall accuracy on HDFS data is higher than the

accuracy on BGL data with both fixed windows and

sliding windows. This is mainly because HDFS

system records relatively simple operations with

only 29 event types, which is much less than that in

BGL data, which is 385. Besides, HDFS data are

grouped by session windows, thereby causing a

higher correlation between events in each log

sequence. Therefore, anomaly detection methods on

HDFS perform better than on BGL.

16. USING HTM TO DETECT THE
ANOMALIES

There are a number of other restrictions that can

make methods unsuitable for real-time streaming

anomaly detection, such as computational

constraints that impede scalability. An example is

Lytics Anomalyzer [25], which runs in O(n2),

limiting its usefulness in practice where streams are

arbitrarily long. Dimensionality is another factor that

can make some methods restrictive. For instance,

online variants of principle component analysis

(PCA) such as osPCA [26] or window-based PCA

[27] can only work with high-dimensional,

multivariate data streams that can be projected onto

a low dimensional space. Techniques that require

data labels, such as supervised classification-based

methods [28], are typically unsuitable for real-time

anomaly detection and continuous learning. On the

other hand, Hierarchical Temporal Memory models

are best suited for the streaming data by the nature

of its architecture [18].

Безпека інформаційних систем і технологій № 1(2), 2020

Lishchytovych А., Pavlenko V., Shmatok A., Finenko Yu., 2020

56

Model-based approaches have been developed

for specific use cases, but require explicit domain

knowledge and are not generalizable. Domain-

specific examples include anomaly detection in

Table 1. Supervised HDFS data set with session windows

Supervised HDFS with session windows

Training Testing

Precision Recall F-measure Precision Recall F-measure

Logistic 0.96 1 0.98 0.95 1 0.98

Decision Tree 1 1 1 1 0.99 1

SVM 0.96 1 0.98 0.95 1 0.98

Table 2. Supervised BGL data set with fixed windows

Supervised BGL with fixed windows

Training Testing

Precision Recall F-measure Precision Recall F-measure

Logistic 0.99 1 1 0.95 0.57 0.71

Decision Tree 1 1 1 0.95 0.57 0.72

SVM 1 1 1 0.95 0.57 0.71

Table 3. Supervised BGL data set with sliding windows

Supervised BGL with sliding windows

Training Testing

Precision Recall F-measure Precision Recall F-measure

Logistic 0.99 0.81 0.89 1 0.7 0.82

Decision Tree 1 1 1 0.92 0.63 0.74

SVM 1 1 1 0.99 0.75 0.85

Table 4. Unsupervised HDF & BGL data sets

 Unsupervised models on HDFS & BGL

 HDFS BGL

 Precision Recall F-measure Precision Recall F-measure

Log Clustering 0.87 0.74 0.8 0.42 0.87 0.57

Invariant Mining 0.88 0.95 0.91 0.83 0.99 0.91

PCA 0.98 0.67 0.79 0.5 0.61 0.55

Fig. 5 - HTM-based anomaly detection workflow

Безпека інформаційних систем і технологій № 1(2), 2020

Lishchytovych А., Pavlenko V., Shmatok A., Finenko Yu., 2020

57

aircraft engine measurements [19], cloud datacenter

temperatures [20], and ATM fraud detection [21].

Kalman filtering is a common technique, but the

parameter tuning often requires domain knowledge

and choosing specific residual error models [22 -

24]. Model-based approaches are often

computationally efficient but their lack of

generalizability limits their applicability to general

streaming applications.

17. HTM BENCHMARK DATASET
The aim of the dataset is to present algorithms

with the challenges they will face in real-world

scenarios, such as a mix of spatial and temporal

anomalies, clean and noisy data, and data streams

where the statistics evolve over time. The best way

to do this is to provide data streams from real-world

use cases, and from a variety of domains and

applications. The data currently in the dataset

represents a variety of sources, ranging from server

network utilization to temperature sensors on

industrial machines to social media chatter.

Dataset (NAB) version 1.0 contains 58 data

streams, each with 1000–22,000 records, for a total

of 365,551 data points [29]. Also included are some

artificially-generated data files that test anomalous

behaviors not yet represented in the corpus's real

data, as well as several data files without any

anomalies. All data files are labeled, either because

we know the root cause for the anomalies from the

provider of the data, or as a result of the well-

defined NAB labeling procedure. These labels

define the ground truth anomalies used in the NAB

scoring process.

Traditional scoring methods, such as precision

and recall, don’t suffice because they don’t

effectively test anomaly detection algorithms for

real-time use. For example, they do not incorporate

time and do not reward early detection. Therefore,

the standard classification metrics – true positive

(TP), false positive (FP), true negative (TN), and

false negative (FN) are not applicable for evaluating

algorithms for the above requirements.

NAB includes three different application profiles:

standard, reward low FPs, and reward low FNs. The

standard profile assigns TPs, FPs, and FNs with

relative weights (tied to the window size) such that

random detections made 10% of the time would get

a zero-final score on average. The latter two profiles

accredit greater penalties for FPs and FNs,

respectively. These two profiles are somewhat

arbitrary but designed to be illustrative of algorithm

behavior. The NAB codebase itself is designed such

that the user can easily tweak the relative weights

and re-score all algorithms. The application profiles

thus help evaluate the sensitivity of detectors to

specific applications criteria. The combination of

anomaly windows, a smooth temporal scoring

function (details in the next section), and the

introduction of application profiles allows

researchers to evaluate online anomaly detector

implementations against the requirements of the

ideal detector. Specifically, the overall NAB scoring

system evaluates real-time performance, prefers

earlier detection of anomalies, penalizes “spam” (i.e.

FPs), and provides realistic costs for the standard

classification evaluation metrics TP, FP, TN, and

FN.

Table 5 Streaming data anomaly detection results

Detector Standard Profile Reward Low FP Reward Low FN

Perfect 100 100 100

Numenta HTM 70.5-69.7 62.6-61.7 75.2-74.2

CAD OSE 69.9 67 73.2

earthgecko Skyline 58.2 46.2 63.9

KNN CAD 58 43.4 64.8

Relative Entropy 54.6 47.6 58.8

Random Cut Forest 51.7 38.4 59.7

Twitter ADVec v1.0.0 47.1 33.6 53.5

Windowed Gaussian 39.6 20.9 47.4

Etsy Skyline 35.7 27.1 44.5

Bayesian Changepoint 17.7 3.2 32.2

EXPoSE 16.4 3.2 26.9

Random 11 1.2 19.5

Null 0 0 0

Безпека інформаційних систем і технологій № 1(2), 2020

Lishchytovych А., Pavlenko V., Shmatok A., Finenko Yu., 2020

58

18. UNSUPERVISED METHODS
ACCURACY RESULTS

The scores are normalized such that the

maximum possible is 100.0 (i.e. the perfect

detector), and a baseline of 0.0 is determined by the

"null" detector (which makes no detections) [29].

19. CONCLUSION
Decision tree is more interpretable than the other

two methods, as developers can detect anomalies

with meaningful explanations (i.e., predicates in tree

nodes). Logistic regression cannot solve linearly

non-separable problems, which can be solved by

SVM using kernels. However, parameters of SVM

are hard to tune (e.g., penalty parameter), so it often

requires much manual effort to establish a model.

Unsupervised methods are more practical and

meaningful due to the lack of labels. Log clustering

uses the idea of online learning. Therefore, it is

suitable for processing large volume of log data.

Invariants mining not only can detect anomalies with

a high accuracy, but also can provide meaningful

and intuitive interpretation for each detected

anomaly. However, the invariants mining process is

time consuming. PCA is not easy to understand and

is sensitive to the data. Thus, its anomaly detection

accuracy varies over different datasets.

The following findings have been made:

• Supervised anomaly detection methods

achieve high precision, while the recall varies over

different datasets and window settings.

• Anomaly detection with sliding windows

can achieve higher accuracy than that of fixed

windows.

• Unsupervised methods generally achieve

inferior performance against supervised methods.

But invariants mining manifests as a promising

method with stable, high performance.

• The settings of window size and step size

have different effects on supervised methods and

unsupervised methods.

• Most anomaly detection methods scale

linearly with log size, but the methods of Log

Clustering and Invariants Mining need further

optimizations for speedup.

• Anomalies detection in streaming, real-time

applications generally better to handle using

20. REFERENCES

[1] Shilin He, Jieming Zhu, Pinjia He, and Michael

R. Lyu, Experience Report: System Log

Analysis for Anomaly Detection, 2016 IEEE

27th International Symposium on Software

Reliability Engineering

[2] Subutai Ahmad, Alexander Lavin, Scott Purdy,

Zuha Agha, Unsupervised real-time anomaly

detection for streaming data, Neurocomputing,

Volume 262, 1 November 2017, Pages 134-147

[3] T. Akidau, R. Bradshaw, C. Chambers, S.

Chernyak, R. J. FernÃ¡ndez- Moctezuma, R.

Lax, S. McVeety, D. Mills, F. Perry, E.

Schmidt, and S. Whittle. The dataflow model: a

practical approach to balancing correctness,

latency, and cost in massive-scale, unbounded,

out-oforder data processing. In PVLDB’15:

Proc. of the VLDB Endowment, volume 8,

pages 1792–1803. VLDB Endowment, 2015.

[4] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan,

and E. Brewer. Failure diagnosis using decision

trees. In ICAC’04: Proc. of the 1st International

Conference on Autonomic Computing, pages

36–43. IEEE, 2004.

[5] Q. Fu, J. Lou, Y. Wang, and J. Li. Execution

anomaly detection in distributed systems

through unstructured log analysis. In ICDM’09:

Proc. of International Conference on Data

Mining, 2009.

[6] J. Han, M. Kamber, and J. Pei. Data mining:

concepts and techniques. Elsevier, 2011.

[7] P. He, J. Zhu, S. He, J. Li, and R. Lyu. An

evaluation study on log parsing and its use in

log mining. In DSN’16: Proc. of the 46th

Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, 2016.

[8] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo.

Failure prediction in ibm bluegene/l event logs.

In ICDM’07: Proc. of the 7th International

Conference on Data Mining, 2007.

[9] Q. Lin, H. Zhang, J.G. Lou, Y. Zhang, and X.

Chen. Log clustering based problem

identification for online service systems. In

ICSE’16: Proc. of the 38th International

Conference on Software Engineering, 2016.

[10] J. Lou, Q. Fu, S. Yang, Y Xu, and J. Li. Mining

invariants from console logs for system

problem detection. In ATC’10: Proc. of the

USENIX Annual Technical Conference, 2010.

[11] A. Makanju, A. Zincir-Heywood, and E.

Milios. Clustering event logs using iterative

partitioning. In KDD’09: Proc. of International

Conference on Knowledge Discovery and Data

Mining, 2009.

[12] A. Oliner and J. Stearley. What supercomputers

say: A study of five system logs. In

DSN’07:Proc. of the 37th Annual IEEE/IFIP

International Conference on Dependable

Systems and Networks, 2007.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, et al.

Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research,

12:2825–2830, 2011.

Безпека інформаційних систем і технологій № 1(2), 2020

Lishchytovych А., Pavlenko V., Shmatok A., Finenko Yu., 2020

59

[14] G. Salton and C Buckley. Term weighting

approaches in automatic text retrival. Technical

report, Cornell, 1987.

[15] L. Tang, T. Li, and C. Perng. LogSig:

generating system events from raw textual logs.

In CIKM’11: Proc. of ACM International

Conference on Information and Knowledge

Management, pages 785–794, 2011.

[16] R. Vaarandi. A data clustering algorithm for

mining patterns from event logs. In IPOM’03:

Proc. of the 3rd Workshop on IP Operations

and Management, 2003.

[17] W. Xu, L. Huang, A. Fox, D. Patterson, and

M.I. Jordon. Detecting large-scale system

problems by mining console logs. In SOSP’09:

Proc. of the ACM Symposium on Operating

Systems Principles, 2009.

[18] Yuwei Cui, Subutai Ahmad, Jeff Hawkins The

HTM Spatial Pooler—A Neocortical Algorithm

for Online Sparse Distributed Coding, Front.

Comput. Neurosci., 29 November 2017,

https://doi.org/10.3389/fncom.2017.00111

[19] D.L. Simon, A.W. Rinehart A model-based

anomaly detection approach for analyzing

streaming aircraft engine measurement data

Proceedings of Turbo Expo 2014: Turbine

Technical Conference and Exposition, ASME

(2014), pp. 665-672, 10.1115/GT2014-27172

[20] Lee E.K., H. Viswanathan, D. Pompili Model-

based thermal anomaly detection in cloud

datacenters Proceedings of the IEEE

International Conference on Distributed

Computing in Sensor Systems (2013), pp. 191-

198, 10.1109/DCOSS.2013.8

[21] T. Klerx, M. Anderka, H.K. Buning, S.

Priesterjahn Model-based anomaly detection for

discrete event systems Proceedings of the 2014

IEEE 26th International Conference on Tools

with Artificial Intelligence, IEEE (2014), pp.

665-672, 10.1109/ICTAI.2014.105

[22] F. Knorn, D.J. Leith Adaptive Kalman filtering

for anomaly detection in software appliances

Proceedings of the IEEE INFOCOM (2008),

10.1109/INFOCOM.2008.4544581

[23] A. Soule, K. Salamatian, N. Taft Combining

filtering and statistical methods for anomaly

detection Proceedings of the 5th ACM

SIGCOMM conference on Internet

measurement, 4 (2005), p. 1,

10.1145/1330107.1330147

[24] Lee H., S.J. Roberts On-line novelty detection

using the Kalman filter and extreme value

theory Proceedings of the 19th International

Conference on Pattern Recognition, (2008), pp.

1-4, 10.1109/ICPR.2008.4761918

[25] A. Morgan, Lytics Anomalyzer Blog, (2015).

https://www.getlytics.com/blog/post/check_out

_anomalyzer.

[26] Lee Y.J., Y.R. Yeh, Wang Y.C.F. Anomaly

detection via online oversampling principal

component analysis IEEE Trans. Knowl. Data

Eng, 25 (2013), pp. 1460-1470,

10.1109/TKDE.2012.99

[27] A. Lakhina, M. Crovella, C. Diot Diagnosing

network-wide traffic anomalies ACM

SIGCOMM Comput. Commun. Rev, 34 (2004),

p. 219, 10.1145/1030194.1015492

[28] N. Görnitz, M. Kloft, K. Rieck, U. Brefeld

Toward supervised anomaly detection J. Artif.

Intell. Res, 46 (2013), pp. 235-262,

10.1613/jair.3623

[29] The Numenta Anomaly Benchmark,

https://github.com/numenta/NAB (accessed

2020-02-09)

Ліщитович Андрій
Леонідович – Medical Brain –
темничній директор. Сфера
наукових інтересів –
інформаційні технології.

Павленко Володимир
Іванович - професор
кафедри Комп’ютерної
інженерії. Сфера наукових
інтересів – інформаційні
технології.

Шматок Олександр
Станіславович – директор
інституту Комп’ютерних
технологій університету
«Україна». Сфера наукових
інтересів – інформаційні
технології.

Фіненко Юрій Іванович –
інженер-дослідник
лабораторії кіберфізичних
систем університету
«Україна». Сфера наукових
інтересів – машинне
навчання, захист інформації,
програмування ПЛІС.

