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AHoTaniss: Y 1mpoMy JOKYMEHTI IIOJaHO OIMC Ta TOPIBHAIBHHUN aHAIi3
JEKITBKOX 3araleHOTPUHHATHX MIiAXOIIB 0 aHaji3y CHCTEMHHUX XXYpHAJTIB Ta
MTOTOKOBHX JAaHUX, IO MacoBO reHepyroThes [T-iHdpacTpykTyporo KoMmaHii, Ta
BUSBIIEHHIO aHOMaii. BakiIuBiCTh BHUABIEHHS aHOMAail IPOJAUKTOBAHA
3pOCTAOYMMHU BUTpPATAMHU Y BUIIAJIKY IIPOCTOIO CHUCTEMHU 4Y€pe3 HOZ[i'l', SIKI MOTJIM
6 Oyru mepenbayeHi Ha OCHOBI 3alMCIB JKypHalIy 3 MOINEpEKYyBaIbHUMH
manuMu. CHUCTeMH BHUSBJICHHS aHOMaidiii moOymoBaHi 3a  JOMOMOTOIO
CTaHIApPTHOIO TMpollecy 300py MaHWX, aHali3y, BWIydeHHS iH(popMmarlii Ta
BUSBJIICHHS BIJIXWICHb. BUSBICHHS aHOMAIbHOI MOBEIIHKA CHCTEMH BiIirpae
Ba)XXJIMBY POJIb y MaclITAOHUX CHCTEMax YNpaBiiHHs iHIMAeHTaMu. CBoeyacHe
BUSIBJIEHHsT J03BoJige [T-agMiHicTparopaM INBUIKO BHSIBUTH INPOOJIEMH Ta
HeraiHO iX BUpimmTH. Takuil MiAXix 3HAYHO CKOPOUYYE Yac MPOCTOI CHCTEMH.
Bimpmricte IT-cucTeM TEHEPYIOTh JKypHAIH 3 JACTANBHOKO iH(OpMAIiEro Tpo
omepanii. ToMy >XypHamM CTalOTh ifcadbHUM JDKEPEJIOM [aHWX pIlIeHb
BHUSBICHHS aHoOMalii. OOcAr >KypHaJiB YHEMOXXJIMBIIIOE X aHaNi3 BPY4YHY Ta
BUMara€ aBTOMAaTHU30BaHUX Hi,Z[XO,I[iB.BiJ'ILHIa YaCTUHA NOKYMCHTa CTOCYETbCA
KPOKY BUSBIICHHSI aHOMAJIii Ta TaKUX aJTOPUTMIB, SIK Perpecisi, JepeBo pillieHs,
SVM, kiactepu3allisi, aHaJli3 OCHOBHUX KOMIIOHEHTIB, BUZI00yTOK iHBapiaHTIiB Ta
iepapxidyHa MOZENb THUMYAacOBOI MaM'sATi. AJNTOPUTMH IOIIYKY aHOMaii, IO
0a3yloTbCSl HAa MOJIENIsIX, Ta I€papXidyHi QIrOPUTMH THMYacoBOI mam'sTi
BUKOPHUCTOBYBaIUCH Juisi 00poOku HabopiB nanux HDFS, BGL ta NAB 3 ~16
MJTH. TIOBiJJOMJICHHSIMH JKYPHAITy Ta ~365 THC. TOUKaMU MOTOKOBUX MaHuX. JlaHi
Oynn Bpy4YHY IO3HAYCHI MIiTKaMH, IMIO0 O3BOJWTH HaBYAaHHSI MOZEICH Ta
pO3paxyHOK TOYHOCTI ix poOoTH. BiAmoBimHO 10 pe3ydbTaTiB, CHCTEMH
KOHTPOJbOBAHOT'O BHUABJICHHSA aHoMatii J0CATa0Th BHUCOKO1 TO‘IHOCTi, aJie
moTpeOyIOTh 3HAYHUX 3YCHIIb Ui TPEHYBaHb MOJEJCH, TOIl SK alTOpUTM Ha
ocHoBi HTM Mozeni moka3ye HaWBHUIy TOYHICTH BHSIBICHHS MPH BiJACYTHOCTI
TpEHYBaHHS.

Abstract: This paper provides with the description, comparative analysis of
multiple commonly used approaches of the analysis of system logs, and
streaming data massively generated by company IT infrastructure with an
unattended anomaly detection feature. An importance of the anomaly detection is
dictated by the growing costs of system downtime due to the events that would
have been predicted based on the log entries with the abnormal data reported.
Anomaly detection systems are built using standard workflow of the data
collection, parsing, information extraction and detection steps. Most of the
document is related to the anomaly detection step and algorithms like regression,
decision tree, SVM, clustering, principal components analysis, invariants mining
and hierarchical temporal memory model. Model-based anomaly algorithms and
hierarchical temporary memory algorithms were used to process HDFS, BGL
and NAB datasets with ~16m log messages and 365k data points of the
streaming data. The data was manually labeled to enable the training of the
models and accuracy calculation. According to the results, supervised anomaly
detection systems achieve high precision but require significant training effort,
while HTM-based algorithm shows the highest detection precision with zero
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training. Detection of the abnormal

system  behavior plays an
important role in large-scale
incident

management systems. Timely detection allows IT administrators to quickly
identify issues and resolve them immediately. This approach reduces the system
downtime dramatically.Most of the IT systems generate logs with the detailed
information of the operations. Therefore, the logs become an ideal data source of

the anomaly detection solutions. The volume of the logs makes it impossible to
analyze them manually and requires automated approaches.

1. INTRODUCTION

Modern enterprises utilize large scale networks,
including hybrids where cloud and on-premise items
are connected into the single mesh. These systems
are in use as the core part of IT, supporting different
services — e-commerce, social networks, search
engines and knowledge bases. IT infrastructure is
designed to work 24/7 serving huge number of users
globally. Any issues with this system will break
down company services and lead to significant
revenue loss.

Collection Parsing

eData readers sTimestamp

e*Events

eEndpoints

into the numerical form so called feature vectors.
Every event becomes the vector and all the vectors
are event matrix. Having the matrix, machine
learning algorithms could be used to identify
patterns and detect any anomalies.

Let’s define an anomaly as a point in time where
the behavior of the system is unusual and
significantly different from previous, normal
behavior. An anomaly may signify a negative
change in the system, like a fluctuation in the turbine
rotation frequency of a jet engine, possibly

Extraction Detection

sModels
sTraining
sAnomalies

s\/ectorization
sEvents matrix

Fig. 1 - Anomaly detection system workflow

Detection of the abnormal system behavior plays
an important role in large-scale incident
management systems. Timely detection allows IT
administrators to quickly identify issues and resolve
them immediately. This approach reduces the system
downtime dramatically.

Most of the IT systems generate logs with the
detailed information of the operations. Therefore,
the logs become an ideal data source of the anomaly
detection solutions. The volume of the logs makes it
impossible to analyze them manually and requires
automated approaches.

This paper provides the review of multiple
anomaly detection algorithms with the evaluation of
their efficiency.

2. ANOMALY DETECTION WORKFLOW
AND ALGORITHMS

Common log-based anomaly detection systems
are built using the following workflow:

Collection step provides the ways to gather logs
information and put it into the common storage.
Outcome of the logs parsing is structured
timestamped events stream. At this stage some
additional information could be also extracted in
case of stable logs structure. To use the machine
learning models information has to be transformed

indicating an imminent failure. An anomaly can also
be positive, like an abnormally high number of web
clicks on a new product page, implying stronger than
normal demand. Either way, anomalies in data
identify abnormal behavior with potentially useful
information. Anomalies can be spatial, where an
individual data instance can be considered
anomalous with respect to the rest of data,
independent of where it occurs in the data stream.

The description of the workflow steps and
algorithms are described in [1].

3. LOG PARSING

Logs are plain text that consists of constant parts
and variable parts, which may vary among different
occurrences. For instance, given the logs of
“Connection  from 10.10.34.12 closed” and
“Connection from 10.10.34.13 closed”, the words
“Connection”, “from” and “closed” are considered
as constant parts because they always stay the same,
while the remaining parts are called variable parts as
they are not fixed. Constant parts are predefined in
source codes by developers, and variable parts are
often generated dynamically (e.g., port number, IP
address) that could not be well utilized in anomaly
detection. The purpose of log parsing is to separate
constant parts from variable parts and form a well-
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established log event (i.e., “Connection from *
closed” in the example). There are two types of log
parsing methods: clustering based (e.g., LKE [5],
LogSig [15]) and heuristic-based (e.g., iPLoM [11],
SLCT [16]). In clustering-based log parsers,
distances between logs are calculated first, and
clustering techniques are often employed to group
logs into different clusters in the next step. Finally,
event template is generated from each cluster. For
heuristic-based approaches, the occurrences of each
word on each log position are counted. Next,
frequent words are selected and composed as the
event candidates. Finally, some candidates are
chosen to be the log events.

4. FEATURE EXTRACTION

The main purpose of this step is to extract
valuable features from log events that could be fed
into anomaly detection models. The input of feature
extraction is log events generated in the log parsing
step, and the output is an event count matrix. In
order to extract features, we firstly need to separate
log data into various groups, where each group
represents a log sequence. To do so, windowing is
applied to divide a log dataset into finite chunks [3].

Fixed window. Both fixed windows and sliding
windows are based on timestamp, which records the
occurrence time of each log. Each fixed window has
its size, which means the time span or time duration
(the window size is At, which is a constant value,
such as one hour or one day). Thus, the number of
fixed windows depends on the predefined window
size. Logs that happened in the same window are
regarded as a log sequence.

Sliding window. Different from fixed windows,
sliding windows consist of two attributes: window
size and step size, e.g., hourly windows sliding
every five minutes. In general, step size is smaller
than window size, therefore causing the overlap of
different windows. The number of sliding windows,
which is often larger than fixed windows, mainly
depends on both window size and step size. Logs
that occurred in the same sliding window are also
grouped as a log sequence, though logs may
duplicate in multiple sliding windows due to the
overlap.

Session window. Compared with the above two
windowing types, session windows are based on
identifiers instead of the timestamp. ldentifiers are
utilized to mark different execution paths in some
log data. For instance, HDFS logs with block_id
record the allocation, writing, replication, deletion of
certain block. Thus, we can group logs according to
the identifiers, where each session window has a
unique identifier. After constructing the log
sequences with windowing techniques, an event
count matrix X is generated. In each log sequence,

we count the occurrence number of each log event to
form the event count vector. For example, if the
event count vector is [0, 0, 2, 3, 0, 1, 0], it means
that event 3 occurred twice and event 4 occurred
three times in this log sequence. Finally, plenty of
event count vectors are constructed to be an event
count matrix X, where entry X(i,j) records how
many times the event j occurred in the i-th log
sequence.

5. SUPERVISED ANOMALY DETECTION

Supervised learning (e.g., decision tree) is
defined as a machine learning task of deriving a
model from labeled training data. Labeled training
data, which indicate normal or anomalous state by
labels, are the prerequisite of supervised anomaly
detection. The more labeled the training data, the
more precise the model would be. We will introduce
three representative supervised methods: logistic
regression, decision tree, and support vector
machine (SVM) in the following.

6. LOGISTIC REGRESSION

Logistic regression is a statistical model that has
been widely-used for classification. To decide the
state of an instance, logistic regression estimates the
probability p of all possible states (normal or
anomalous). The probability p is calculated by a
logistic function, which is built on labeled training
data. When a new instance appears, the logistic
function could compute the probability p, p€(0,1) of
all possible states. After obtaining the probabilities,
the states with the largest probability is the
classification output. To detect anomalies, an event
count vector is constructed from each log sequence,
and every event count vector together with its label
are called an instance. Firstly, we use training
instances to establish the logistic regression model,
which is actually a logistic function. After obtaining
the model, we feed a testing instance X into the
logistic function to compute its possibility p of
anomaly, the label of X is anomalous when p>0.5
and normal otherwise.

7. DECISION TREE
Decision Tree is a tree structure diagram that
uses branches to illustrate the predicted state for
each instance. The decision tree is constructed in a
top-down manner using training data. Each tree node

Events = 12 |
| samples:s |

T " s » " T
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is created using the current “best” attribute, which is
selected by attribute’s information gain [6]. For
example, the root node in Figure 2 shows that there
are totally 20 instances in our dataset. When splitting
the root node, the occurrence number of Event 2 is
treated as the “best” attribute. Thus, the entire 20
training instances are split into two subsets
according to the value of this attribute, in which one
contains 12 instances and the other consists of 8
instances.

Decision Tree was first applied to failure
diagnosis for web request log system in [4]. The
event count vectors together with their labels
described in Section I11-B are utilized to build the
decision tree. To detect the state of a new instance, it
traverses the decision tree according to the
predicates of each traversed tree node. In the end of
traverse, the instance will arrive one of the leaves,
which reflects the state of this instance.

8. SUPPORT VECTOR MACHINE

Support Vector Machine (SVM) is a supervised
learning method for classification. In SVM, a
hyperplane is constructed to separate various classes
of instances in high-dimension space. Finding the
hyperplane is an optimization problem, which
maximizes the distance between the hyperplane and
the nearest data point in different classes.

In [8], Liang et al. employ SVM to detect failures
and compared it with other methods. Similar to
Logistic Regression and Decision Tree, the training
instances are event count vectors together with their
labels. In anomaly detection via SVM, if a new
instance is located above the hyperplane, it would be
reported as an anomaly, while marked as normal
otherwise. In this paper, we only discuss linear
SVM.

9. UNSUPERVISED ANOMALY
DETECTION

Unlike  supervised methods, unsupervised
learning is another common machine learning task
but its training data is unlabeled. Unsupervised
methods are more applicable in real-world
production environment due to the lack of labels.
Common unsupervised approaches include various
clustering methods, association rule mining, PCA
and etc.

10. LOG CLUSTERING

In [9], Lin et al. design a clustering-based method
called Log Cluster to identify online system
problems. Log Cluster requires two training phases,
namely knowledge base initialization phase and
online learning phase. Thus, the training instances
are divided into two parts for these two phases,
respectively.

Knowledge base initialization phase contains
three steps: log vectorization, log clustering,
representative vectors extraction. Firstly, log
sequences are vectorized as event count vectors,
which are further revised by Inverse Document.
Frequency (IDF) [14] and normalization. Secondly,
Log Cluster clusters normal and abnormal event
count vectors separately with agglomerative
hierarchical clustering, which generates two sets of
vector clusters (i.e., normal clusters and abnormal
clusters) as knowledge base. Finally, we select a
representative vector for each cluster by computing
its centroid.

Online learning phase is used to further adjust the
clusters constructed in knowledge base initialization
phase. In online learning phase, event count vectors
are added into the knowledge base one by one.
Given an event count vector, the distances between

Fig. 3 -Log Cluster anomaly detection

it and existing representative vectors are computed.
If the smallest distance is less than a threshold, this
event count vector will be added to the nearest
cluster and the representative vector of this cluster
will be updated. Otherwise, Log Cluster creates a
new cluster using this event count vector. After
constructing the knowledge base and complete the
online learning process, Log Cluster can be
employed to detect anomalies. Specifically, to
determine the state of a new log sequence, we
compute its distance to representative vectors in
knowledge base. If the smallest distance is larger
than a threshold, the log sequence is reported as an
anomaly. Otherwise, if the nearest cluster is a
normal/an abnormal cluster, the log sequence is
reported as normal/abnormal.

11. PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a
statistical method that has been widely used to
conduct dimension reduction. The basic idea behind
PCA is to project high-dimension data (e.g., high-
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dimension points) to a new coordinate system
composed of k principal components (i.e., k
dimensions), where k is set to be less than the
original dimension. PCA calculates the k principal
components by finding components (i.e., axes)
which catch the most variance among the high-
dimension data. Thus, the PCA-transformed low-
dimension data can preserve the major
characteristics (e.g., the similarity between two
points) of the original high-dimension data. For
example, in Figure 3, PCA attempts to transform
two-dimension points to the one-dimension points.
Sn is selected as the principal component because the
distance between points can be best described by
mapping them to S,

L&l —1ak

where n () represents the number of logs which
belong to corresponding event type =. Intuitively,
Invariants mining could uncover the linear
relationships between multiple log events that
represent system normal execution behaviors. Linear
relationships prevail in real-world system events.
For example, normally, a file must be closed after it
was opened. Thus, log with phrase “open file” and
log with phrase “close file” would appear in pair. If
the number of log events “open file” and that of
“close file” in an instance are not equal, it will be
marked abnormal because it violates the linear
relationship. Invariants mining, which aims at
finding invariants (i.e., linear relationships), contains
three steps. The input of invariants mining is an

Fig. 4 - Principal Component Analysis

PCA was first applied in log-based anomaly
detection [17]. In their anomaly detection method,
each log sequence is vectorized as an event count
vector. After that, PCA is employed to find patterns
between the dimensions of event count vectors.
Employing PCA, two subspaces are generated,
namely normal space Sn and anomaly space Sa. Sn
is constructed by the first k principal components
and Sn is constructed by the remaining (n-k), where
n is the original dimension. Then, the projection ya
=(1-PPT)y of an event count vector y to S, is
calculated, where p=[vi, V2, Vs, ..., vn] is the first k
principal components. If the length of y, is larger
than a threshold, the corresponding event count
vector will be reported as an anomaly. For example,
the selected point in Figure 3 is an anomaly because
the length of its projection on S, is too large

12. INVARIANTS MINING

Program Invariants are the linear relationships
that always hold during system running even with
various inputs and under different workloads.
Invariants mining was first applied to log-based
anomaly detection in [10]. Logs that have the same
session id (e.g., block_id in HDFS) often represent
the program execution flow of that session.

In this execution flow, the system generates a log
message at each stage from A to G. Assuming that
there are plenty of instances running in the system
and they follow the program execution flow in
Figure 4, the following equations would be valid:

event count matrix generated from log sequences,
where each row is an event count vector. Firstly, the
invariant space is estimated using singular value
decomposition, which determines the amount r of
invariants that need to be mined in the next step.
Secondly, this method finds out the invariants by a
brute force search algorithm. Finally, each mined
invariant candidate is validated by comparing its
support with a threshold (e.g., supported by 98% of
the event count vectors). This step will continue
until r independent invariants are obtained. In
anomaly detection based on invariants, when a new
log sequence arrives, we check whether it obey the
invariants. The log sequence will be reported as an
anomaly if at least one invariant is broken.

13. TOOL IMPLEMENTATION

[1] implemented six anomaly detection methods
in Python with over 4,000 lines of code and
packaged them as a toolkit. For supervised methods,
[1] utilizes a widely-used machine learning package,
scikit-learn [13], to implement the learning models
of Logistic Regression, Decision Tree, and SVM.

There are plenty of parameters in SVM and
logistic regression, and we manually tune these
parameters to achieve the best results during
training. For SVM, we tried different kernels and
related parameters one by one, and we found that
SVM with linear kernel obtains the better anomaly
detection accuracy than other kernels. For logistic
regression, different parameters are also explored,
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and they are carefully tuned to achieve the best
performance.

Implementing unsupervised methods, however, is
not straightforward. For log clustering, [1] were not
able to directly use the clustering APl from scikit-
learn, because it is not designed for large-scale
datasets, where our data cannot fit to the memory.
We implemented the clustering algorithm into an
online version, whereby each data instance is
grouped into a cluster one by one. There are multiple
thresholds to be tuned. We also paid great efforts to
implement the invariants mining method, because
we built a search space for possible invariants and
proposed multiple ways to prune all unnecessary
invariants. It is very time-consuming to test different
combination of thresholds. [1] finally implemented
PCA method according to the original reference
based on the use of an API from scikit-learn. PCA
has only two parameters and it is easy to tune.

14. SUPERVISED METHODS
EXPERIMENTAL DATASETS

Log Datasets. Publicly available production logs
are scarce data because companies rarely publish
them due to confidential issues. Fortunately, by
exploring an abundance of literature and intensively
contacting the corresponding authors, [1] has
successfully obtained two log datasets, HDFS data
[17] and BGL data [12], which are suitable for
evaluating existing anomaly detection methods.
Both datasets are collected from production systems,
with a total of 15,923,592 log messages and 365,298
anomaly samples, that are manually labeled by the
original domain experts. Thus, [1] took these labels
(anomaly or not) as the ground truth for accuracy
evaluation purposes. More statistical information of
the datasets is provided in Table I. HDFS data
contain 11,175,629 log messages, which were
collected from Amazon EC2 platform [17]. HDFS
logs record a unique block ID for each block
operation such as allocation, writing, replication,
deletion. Thus, the operations in logs can be more
naturally captured by session windows, as
introduced in I11-B, because each unique block 1D
can be utilized to slice the logs into a set of log
sequences. Then we extract feature vectors from
these log sequences and generate 575,061 event
count vectors. Among them, 16,838 samples are
marked as anomalies.

BGL data contain 4,747,963 log messages, which
were recorded by the Blue Gene supercomputer
system at Lawrence Livermore National Labs
(LLNL) [12]. Unlike HDFS data, BGL logs have no
identifier recorded for each job execution. Thus, we
have to use fixed windows or sliding windows to
slice logs as log sequences, and then extract the
corresponding event count vectors. But the number

of windows depends on the chosen window size
(and step size). In BGL data, 348,460 log messages
are labeled as failures, and a log sequence is marked
as an anomaly if any failure logs exist in that
sequence

15. SUPERVISED METHODS ACCURACY
RESULTS

To explore the accuracy of supervised methods,
we use them to detect anomalies on HDFS data and
BGL data. [1] uses session windows to slice HDFS
data and then generate the event count matrix, while
fixed windows and sliding windows are applied to
BGL data separately. In order to check the validity
of three supervised methods (namely Logistic
Regression, Decision Tree, SVM), we first train the
models on training data, and then apply them to
testing data. [1] reports both training accuracy and
testing accuracy in different settings, as illustrated in
Tables 1 - 4. We can observe that all supervised
methods achieve high training accuracy (over 0.95),
which implies that normal instances and abnormal
instances are well separated by using our feature
representation. However, their accuracy on testing
data varies with different methods and datasets. The
overall accuracy on HDFS data is higher than the
accuracy on BGL data with both fixed windows and
sliding windows. This is mainly because HDFS
system records relatively simple operations with
only 29 event types, which is much less than that in
BGL data, which is 385. Besides, HDFS data are
grouped by session windows, thereby causing a
higher correlation between events in each log
sequence. Therefore, anomaly detection methods on
HDFS perform better than on BGL.

16. USING HTM TO DETECT THE
ANOMALIES

There are a number of other restrictions that can
make methods unsuitable for real-time streaming
anomaly  detection, such as computational
constraints that impede scalability. An example is
Lytics Anomalyzer [25], which runs in O(n2),
limiting its usefulness in practice where streams are
arbitrarily long. Dimensionality is another factor that
can make some methods restrictive. For instance,
online variants of principle component analysis
(PCA) such as osPCA [26] or window-based PCA
[27] can only work with high-dimensional,
multivariate data streams that can be projected onto
a low dimensional space. Techniques that require
data labels, such as supervised classification-based
methods [28], are typically unsuitable for real-time
anomaly detection and continuous learning. On the
other hand, Hierarchical Temporal Memory models
are best suited for the streaming data by the nature
of its architecture [18].

Lishchytovych A., Pavlenko V., Shmatok A., Finenko Yu., 2020



56 Beaneka iHcopmalLiiiHux cuctem i TexrHonoriii Ne 1(2), 2020

Table 1. Supervised HDFS data set with session windows

Supervised HDFS with session windows

Training Testing
Precision | Recall F-measure Precision | Recall F-measure
Logistic 0.96 1 0.98 0.95 1 0.98
Decision Tree 1 1 1 1 0.99 1
SVM 0.96 1 0.98 0.95 1 0.98

Table 2. Supervised BGL data set with fixed windows

Supervised BGL with fixed windows

Trainin Testing
Precision | Recall F-measure Precision | Recall F-measure
Logistic 0.99 1 1 0.95 0.57 0.71
Decision Tree 1 1 1 0.95 0.57 0.72
SVM 1 1 1 0.95 0.57 0.71

Table 3. Supervised BGL data set with sliding windows

Supervised BGL with sliding windows

Training Testing
Precision | Recall F-measure Precision | Recall F-measure
Logistic 0.99 0.81 0.89 1 0.7 0.82
Decision Tree 1 1 1 0.92 0.63 0.74
SVM 1 1 1 0.99 0.75 0.85

Table 4. Unsupervised HDF & BGL data sets

Unsupervised models on HDFS & BGL

HDFS BGL
Precision | Recall F-measure Precision | Recall F-measure
Log Clustering 0.87 0.74 0.8 0.42 0.87 0.57
Invariant Mining 0.88 0.95 0.91 0.83 0.99 0.91
PCA 0.98 0.67 0.79 0.5 0.61 0.55

Anomaly detection using HTM

HTM a(x;) 5 ;
X " —| ; ¢
Tt GEen Prediction | e—p .Ano.maly —
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HTM core algorithm components

3 a(zy)
—> | Encoder (—»| Spatial »| Sequence Ly r(z)
pooler memory

» alxy)

Fig. 5 - HTM-based anomaly detection workflow

Model-based approaches have been developed knowledge and are not generalizable. Domain-
for specific use cases, but require explicit domain  specific examples include anomaly detection in
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aircraft engine measurements [19], cloud datacenter
temperatures [20], and ATM fraud detection [21].
Kalman filtering is a common technique, but the
parameter tuning often requires domain knowledge
and choosing specific residual error models [22 -
24].  Model-based  approaches are  often
computationally efficient but their lack of
generalizability limits their applicability to general
streaming applications.

17. HTM BENCHMARK DATASET
The aim of the dataset is to present algorithms
with the challenges they will face in real-world

Traditional scoring methods, such as precision
and recall, don’t suffice because they don’t
effectively test anomaly detection algorithms for
real-time use. For example, they do not incorporate
time and do not reward early detection. Therefore,
the standard classification metrics — true positive
(TP), false positive (FP), true negative (TN), and
false negative (FN) are not applicable for evaluating
algorithms for the above requirements.

NAB includes three different application profiles:
standard, reward low FPs, and reward low FNs. The
standard profile assigns TPs, FPs, and FNs with
relative weights (tied to the window size) such that

Table 5 Streaming data anomaly detection results

Detector Standard Profile Reward Low FP Reward Low FN
Perfect 100 100 100
Numenta HTM 70.5-69.7 62.6-61.7 75.2-74.2
CAD OSE 69.9 67 73.2
earthgecko Skyline 58.2 46.2 63.9
KNN CAD 58 43.4 64.8
Relative Entropy 54.6 47.6 58.8
Random Cut Forest 51.7 38.4 59.7
Twitter ADVec v1.0.0 47.1 33.6 53.5
Windowed Gaussian 39.6 20.9 47.4
Etsy Skyline 35.7 27.1 44.5
Bayesian Changepoint 17.7 3.2 32.2
EXPoSE 16.4 3.2 26.9
Random 11 1.2 19.5

Null 0 0 0

scenarios, such as a mix of spatial and temporal
anomalies, clean and noisy data, and data streams
where the statistics evolve over time. The best way
to do this is to provide data streams from real-world
use cases, and from a variety of domains and
applications. The data currently in the dataset
represents a variety of sources, ranging from server
network utilization to temperature sensors on
industrial machines to social media chatter.

Dataset (NAB) version 1.0 contains 58 data
streams, each with 1000—22,000 records, for a total
of 365,551 data points [29]. Also included are some
artificially-generated data files that test anomalous
behaviors not yet represented in the corpus's real
data, as well as several data files without any
anomalies. All data files are labeled, either because
we know the root cause for the anomalies from the
provider of the data, or as a result of the well-
defined NAB labeling procedure. These labels
define the ground truth anomalies used in the NAB
scoring process.

random detections made 10% of the time would get
a zero-final score on average. The latter two profiles
accredit greater penalties for FPs and FNs,
respectively. These two profiles are somewhat
arbitrary but designed to be illustrative of algorithm
behavior. The NAB codebase itself is designed such
that the user can easily tweak the relative weights
and re-score all algorithms. The application profiles
thus help evaluate the sensitivity of detectors to
specific applications criteria. The combination of
anomaly windows, a smooth temporal scoring
function (details in the next section), and the
introduction of application profiles allows
researchers to evaluate online anomaly detector
implementations against the requirements of the
ideal detector. Specifically, the overall NAB scoring
system evaluates real-time performance, prefers
earlier detection of anomalies, penalizes “spam” (i.e.
FPs), and provides realistic costs for the standard
classification evaluation metrics TP, FP, TN, and
FN.
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18. UNSUPERVISED METHODS
ACCURACY RESULTS
The scores are normalized such that the
maximum possible is 100.0 (i.e. the perfect
detector), and a baseline of 0.0 is determined by the
"null" detector (which makes no detections) [29].

19. CONCLUSION

Decision tree is more interpretable than the other
two methods, as developers can detect anomalies
with meaningful explanations (i.e., predicates in tree
nodes). Logistic regression cannot solve linearly
non-separable problems, which can be solved by
SVM using kernels. However, parameters of SVM
are hard to tune (e.g., penalty parameter), so it often
requires much manual effort to establish a model.
Unsupervised methods are more practical and
meaningful due to the lack of labels. Log clustering
uses the idea of online learning. Therefore, it is
suitable for processing large volume of log data.
Invariants mining not only can detect anomalies with
a high accuracy, but also can provide meaningful
and intuitive interpretation for each detected
anomaly. However, the invariants mining process is
time consuming. PCA is not easy to understand and
is sensitive to the data. Thus, its anomaly detection
accuracy varies over different datasets.

The following findings have been made:

e Supervised anomaly detection methods
achieve high precision, while the recall varies over
different datasets and window settings.

 Anomaly detection with sliding windows
can achieve higher accuracy than that of fixed
windows.

*  Unsupervised methods generally achieve
inferior performance against supervised methods.
But invariants mining manifests as a promising
method with stable, high performance.

»  The settings of window size and step size
have different effects on supervised methods and
unsupervised methods.

« Most anomaly detection methods scale
linearly with log size, but the methods of Log
Clustering and Invariants Mining need further
optimizations for speedup.

»  Anomalies detection in streaming, real-time
applications generally better to handle using
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