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Анотація: У цьому документі подано опис та порівняльний аналіз 

декількох загальноприйнятих підходів до аналізу системних журналів та 

потокових даних, що масово генеруються ІТ-інфраструктурою компанії, та 

виявленню аномалій. Важливість виявлення аномалії продиктована 

зростаючими витратами у випадку простою системи через події, які могли 

б бути передбачені на основі записів журналу з попереджувальними 

даними. Системи виявлення аномалій побудовані за допомогою 

стандартного процесу збору даних, аналізу, вилучення інформації та 

виявлення відхилень. Виявлення аномальної поведінки системи відіграє 

важливу роль у масштабних системах управління інцидентами. Своєчасне 

виявлення дозволяє ІТ-адміністраторам швидко виявити проблеми та 

негайно їх вирішити. Такий підхід значно скорочує час простою системи. 

Більшість ІТ-систем генерують журнали з детальною інформацією про 

операції. Тому журнали стають ідеальним джерелом даних рішень 

виявлення аномалії. Обсяг журналів унеможливлює їх аналіз вручну та 

вимагає автоматизованих підходів.Більша частина документа стосується 

кроку виявлення аномалії та таких алгоритмів, як регресія, дерево рішень, 

SVM, кластеризація, аналіз основних компонентів, видобуток інваріантів та 

ієрархічна модель тимчасової пам'яті. Алгоритми пошуку аномалії, що 

базуються на моделях, та ієрархічні алгоритми тимчасової пам'яті 

використовувались для обробки наборів даних HDFS, BGL та NAB з ~16 

млн. повідомленнями журналу та ~365 тис. точками потокових даних. Дані 

були вручну позначені мітками, щоб дозволити навчання моделей та 

розрахунок точності їх роботи. Відповідно до результатів, системи 

контрольованого виявлення аномалій досягають високої точності, але 

потребують значних зусиль для тренувань моделей, тоді як алгоритм на 

основі HTM моделі показує найвищу точність виявлення при відсутності 

тренування. 

Abstract: This paper provides with the description, comparative analysis of 

multiple commonly used approaches of the analysis of system logs, and 

streaming data massively generated by company IT infrastructure with an 

unattended anomaly detection feature. An importance of the anomaly detection is 

dictated by the growing costs of system downtime due to the events that would 

have been predicted based on the log entries with the abnormal data reported. 

Anomaly detection systems are built using standard workflow of the data 

collection, parsing, information extraction and detection steps. Most of the 

document is related to the anomaly detection step and algorithms like regression, 

decision tree, SVM, clustering, principal components analysis, invariants mining 

and hierarchical temporal memory model. Model-based anomaly algorithms and 

hierarchical temporary memory algorithms were used to process HDFS, BGL 

and NAB datasets with ~16m log messages and 365k data points of the 

streaming data. The data was manually labeled to enable the training of the 

models and accuracy calculation. According to the results, supervised anomaly 

detection systems achieve high precision but require significant training effort, 

while HTM-based algorithm shows the highest detection precision with zero 
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management systems. Timely detection allows IT administrators to quickly 

identify issues and resolve them immediately. This approach reduces the system 

downtime dramatically.Most of the IT systems generate logs with the detailed 

information of the operations. Therefore, the logs become an ideal data source of 

the anomaly detection solutions. The volume of the logs makes it impossible to 

analyze them manually and requires automated approaches. 

 

 

1. INTRODUCTION 
Modern enterprises utilize large scale networks, 

including hybrids where cloud and on-premise items 

are connected into the single mesh. These systems 

are in use as the core part of IT, supporting different 

services – e-commerce, social networks, search 

engines and knowledge bases. IT infrastructure is 

designed to work 24/7 serving huge number of users 

globally. Any issues with this system will break 

down company services and lead to significant 

revenue loss. 

Detection of the abnormal system behavior plays 

an important role in large-scale incident 

management systems. Timely detection allows IT 

administrators to quickly identify issues and resolve 

them immediately. This approach reduces the system 

downtime dramatically. 

Most of the IT systems generate logs with the 

detailed information of the operations. Therefore, 

the logs become an ideal data source of the anomaly 

detection solutions. The volume of the logs makes it 

impossible to analyze them manually and requires 

automated approaches. 

This paper provides the review of multiple 

anomaly detection algorithms with the evaluation of 

their efficiency. 

2. ANOMALY DETECTION WORKFLOW 
AND ALGORITHMS 

Common log-based anomaly detection systems 

are built using the following workflow: 

Collection step provides the ways to gather logs 

information and put it into the common storage. 

Outcome of the logs parsing is structured 

timestamped events stream. At this stage some 

additional information could be also extracted in 

case of stable logs structure. To use the machine 

learning models information has to be transformed 

into the numerical form so called feature vectors. 

Every event becomes the vector and all the vectors 

are event matrix. Having the matrix, machine 

learning algorithms could be used to identify 

patterns and detect any anomalies.  

Let’s define an anomaly as a point in time where 

the behavior of the system is unusual and 

significantly different from previous, normal 

behavior. An anomaly may signify a negative 

change in the system, like a fluctuation in the turbine 

rotation frequency of a jet engine, possibly 

indicating an imminent failure. An anomaly can also 

be positive, like an abnormally high number of web 

clicks on a new product page, implying stronger than 

normal demand. Either way, anomalies in data 

identify abnormal behavior with potentially useful 

information. Anomalies can be spatial, where an 

individual data instance can be considered 

anomalous with respect to the rest of data, 

independent of where it occurs in the data stream. 

The description of the workflow steps and 

algorithms are described in [1].  

3. LOG PARSING 
Logs are plain text that consists of constant parts 

and variable parts, which may vary among different 

occurrences. For instance, given the logs of 

“Connection from 10.10.34.12 closed” and 

“Connection from 10.10.34.13 closed”, the words 

“Connection”, “from” and “closed” are considered 

as constant parts because they always stay the same, 

while the remaining parts are called variable parts as 

they are not fixed. Constant parts are predefined in 

source codes by developers, and variable parts are 

often generated dynamically (e.g., port number, IP 

address) that could not be well utilized in anomaly 

detection. The purpose of log parsing is to separate 

constant parts from variable parts and form a well-

 

Fig. 1 - Anomaly detection system workflow 
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established log event (i.e., “Connection from * 

closed” in the example). There are two types of log 

parsing methods: clustering based (e.g., LKE [5], 

LogSig [15]) and heuristic-based (e.g., iPLoM [11], 

SLCT [16]). In clustering-based log parsers, 

distances between logs are calculated first, and 

clustering techniques are often employed to group 

logs into different clusters in the next step. Finally, 

event template is generated from each cluster. For 

heuristic-based approaches, the occurrences of each 

word on each log position are counted. Next, 

frequent words are selected and composed as the 

event candidates. Finally, some candidates are 

chosen to be the log events. 

4. FEATURE EXTRACTION 
The main purpose of this step is to extract 

valuable features from log events that could be fed 

into anomaly detection models. The input of feature 

extraction is log events generated in the log parsing 

step, and the output is an event count matrix. In 

order to extract features, we firstly need to separate 

log data into various groups, where each group 

represents a log sequence. To do so, windowing is 

applied to divide a log dataset into finite chunks [3]. 

Fixed window. Both fixed windows and sliding 

windows are based on timestamp, which records the 

occurrence time of each log. Each fixed window has 

its size, which means the time span or time duration 

(the window size is ∆t, which is a constant value, 

such as one hour or one day). Thus, the number of 

fixed windows depends on the predefined window 

size. Logs that happened in the same window are 

regarded as a log sequence. 

Sliding window. Different from fixed windows, 

sliding windows consist of two attributes: window 

size and step size, e.g., hourly windows sliding 

every five minutes. In general, step size is smaller 

than window size, therefore causing the overlap of 

different windows. The number of sliding windows, 

which is often larger than fixed windows, mainly 

depends on both window size and step size. Logs 

that occurred in the same sliding window are also 

grouped as a log sequence, though logs may 

duplicate in multiple sliding windows due to the 

overlap. 

Session window. Compared with the above two 

windowing types, session windows are based on 

identifiers instead of the timestamp. Identifiers are 

utilized to mark different execution paths in some 

log data. For instance, HDFS logs with block_id 

record the allocation, writing, replication, deletion of 

certain block. Thus, we can group logs according to 

the identifiers, where each session window has a 

unique identifier. After constructing the log 

sequences with windowing techniques, an event 

count matrix X is generated. In each log sequence, 

we count the occurrence number of each log event to 

form the event count vector. For example, if the 

event count vector is [0, 0, 2, 3, 0, 1, 0], it means 

that event 3 occurred twice and event 4 occurred 

three times in this log sequence. Finally, plenty of 

event count vectors are constructed to be an event 

count matrix X, where entry X(i,j) records how 

many times the event j occurred in the i-th log 

sequence. 

5. SUPERVISED ANOMALY DETECTION 
Supervised learning (e.g., decision tree) is 

defined as a machine learning task of deriving a 

model from labeled training data. Labeled training 

data, which indicate normal or anomalous state by 

labels, are the prerequisite of supervised anomaly 

detection. The more labeled the training data, the 

more precise the model would be. We will introduce 

three representative supervised methods: logistic 

regression, decision tree, and support vector 

machine (SVM) in the following. 

6. LOGISTIC REGRESSION 
Logistic regression is a statistical model that has 

been widely-used for classification. To decide the 

state of an instance, logistic regression estimates the 

probability p of all possible states (normal or 

anomalous). The probability p is calculated by a 

logistic function, which is built on labeled training 

data. When a new instance appears, the logistic 

function could compute the probability p, p∈(0,1) of 

all possible states. After obtaining the probabilities, 

the states with the largest probability is the 

classification output. To detect anomalies, an event 

count vector is constructed from each log sequence, 

and every event count vector together with its label 

are called an instance. Firstly, we use training 

instances to establish the logistic regression model, 

which is actually a logistic function. After obtaining 

the model, we feed a testing instance X into the 

logistic function to compute its possibility p of 

anomaly, the label of X is anomalous when p≥0.5 

and normal otherwise. 

7. DECISION TREE 
Decision Tree is a tree structure diagram that 

uses branches to illustrate the predicted state for 

each instance. The decision tree is constructed in a 

top-down manner using training data. Each tree node 

 

Fig. 2 -Decision Tree 
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is created using the current “best” attribute, which is 

selected by attribute’s information gain [6]. For 

example, the root node in Figure 2 shows that there 

are totally 20 instances in our dataset. When splitting 

the root node, the occurrence number of Event 2 is 

treated as the “best” attribute. Thus, the entire 20 

training instances are split into two subsets 

according to the value of this attribute, in which one 

contains 12 instances and the other consists of 8 

instances. 

Decision Tree was first applied to failure 

diagnosis for web request log system in [4]. The 

event count vectors together with their labels 

described in Section III-B are utilized to build the 

decision tree. To detect the state of a new instance, it 

traverses the decision tree according to the 

predicates of each traversed tree node. In the end of 

traverse, the instance will arrive one of the leaves, 

which reflects the state of this instance. 

8. SUPPORT VECTOR MACHINE 

Support Vector Machine (SVM) is a supervised 

learning method for classification. In SVM, a 

hyperplane is constructed to separate various classes 

of instances in high-dimension space. Finding the 

hyperplane is an optimization problem, which 

maximizes the distance between the hyperplane and 

the nearest data point in different classes. 

In [8], Liang et al. employ SVM to detect failures 

and compared it with other methods. Similar to 

Logistic Regression and Decision Tree, the training 

instances are event count vectors together with their 

labels. In anomaly detection via SVM, if a new 

instance is located above the hyperplane, it would be 

reported as an anomaly, while marked as normal 

otherwise. In this paper, we only discuss linear 

SVM. 

9. UNSUPERVISED ANOMALY 
DETECTION 

Unlike supervised methods, unsupervised 

learning is another common machine learning task 

but its training data is unlabeled. Unsupervised 

methods are more applicable in real-world 

production environment due to the lack of labels. 

Common unsupervised approaches include various 

clustering methods, association rule mining, PCA 

and etc. 

10. LOG CLUSTERING 

In [9], Lin et al. design a clustering-based method 

called Log Cluster to identify online system 

problems. Log Cluster requires two training phases, 

namely knowledge base initialization phase and 

online learning phase. Thus, the training instances 

are divided into two parts for these two phases, 

respectively. 

Knowledge base initialization phase contains 

three steps: log vectorization, log clustering, 

representative vectors extraction. Firstly, log 

sequences are vectorized as event count vectors, 

which are further revised by Inverse Document. 

Frequency (IDF) [14] and normalization. Secondly, 

Log Cluster clusters normal and abnormal event 

count vectors separately with agglomerative 

hierarchical clustering, which generates two sets of 

vector clusters (i.e., normal clusters and abnormal 

clusters) as knowledge base. Finally, we select a 

representative vector for each cluster by computing 

its centroid. 

Online learning phase is used to further adjust the 

clusters constructed in knowledge base initialization 

phase. In online learning phase, event count vectors 

are added into the knowledge base one by one. 

Given an event count vector, the distances between 

it and existing representative vectors are computed. 

If the smallest distance is less than a threshold, this 

event count vector will be added to the nearest 

cluster and the representative vector of this cluster 

will be updated. Otherwise, Log Cluster creates a 

new cluster using this event count vector. After 

constructing the knowledge base and complete the 

online learning process, Log Cluster can be 

employed to detect anomalies. Specifically, to 

determine the state of a new log sequence, we 

compute its distance to representative vectors in 

knowledge base. If the smallest distance is larger 

than a threshold, the log sequence is reported as an 

anomaly. Otherwise, if the nearest cluster is a 

normal/an abnormal cluster, the log sequence is 

reported as normal/abnormal. 

11. PRINCIPAL COMPONENT ANALYSIS 

Principal Component Analysis (PCA) is a 

statistical method that has been widely used to 

conduct dimension reduction. The basic idea behind 

PCA is to project high-dimension data (e.g., high-

 

Fig. 3 -Log Cluster anomaly detection 
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dimension points) to a new coordinate system 

composed of  principal components (i.e.,  

dimensions), where  is set to be less than the 

original dimension. PCA calculates the  principal 

components by finding components (i.e., axes) 

which catch the most variance among the high-

dimension data. Thus, the PCA-transformed low-

dimension data can preserve the major 

characteristics (e.g., the similarity between two 

points) of the original high-dimension data. For 

example, in Figure 3, PCA attempts to transform 

two-dimension points to the one-dimension points. 

Sn is selected as the principal component because the 

distance between points can be best described by 

mapping them to Sn 

PCA was first applied in log-based anomaly 

detection [17]. In their anomaly detection method, 

each log sequence is vectorized as an event count 

vector. After that, PCA is employed to find patterns 

between the dimensions of event count vectors. 

Employing PCA, two subspaces are generated, 

namely normal space Sn and anomaly space Sa. Sn 

is constructed by the first k principal components 

and Sn is constructed by the remaining (n-k), where 

n is the original dimension. Then, the projection ya 

=(1-PPT)y of an event count vector y to Sa is 

calculated, where p=[v1, v2, v3 ,…, vn] is the first k 

principal components. If the length of ya is larger 

than a threshold, the corresponding event count 

vector will be reported as an anomaly. For example, 

the selected point in Figure 3 is an anomaly because 

the length of its projection on Sa is too large 

12. INVARIANTS MINING 
Program Invariants are the linear relationships 

that always hold during system running even with 

various inputs and under different workloads. 

Invariants mining was first applied to log-based 

anomaly detection in [10]. Logs that have the same 

session id (e.g., block_id in HDFS) often represent 

the program execution flow of that session. 

In this execution flow, the system generates a log 

message at each stage from A to G. Assuming that 

there are plenty of instances running in the system 

and they follow the program execution flow in 

Figure 4, the following equations would be valid: 

where n (∗) represents the number of logs which 

belong to corresponding event type ∗. Intuitively, 

Invariants mining could uncover the linear 

relationships between multiple log events that 

represent system normal execution behaviors. Linear 

relationships prevail in real-world system events. 

For example, normally, a file must be closed after it 

was opened. Thus, log with phrase “open file” and 

log with phrase “close file” would appear in pair. If 

the number of log events “open file” and that of 

“close file” in an instance are not equal, it will be 

marked abnormal because it violates the linear 

relationship. Invariants mining, which aims at 

finding invariants (i.e., linear relationships), contains 

three steps. The input of invariants mining is an 

event count matrix generated from log sequences, 

where each row is an event count vector. Firstly, the 

invariant space is estimated using singular value 

decomposition, which determines the amount r of 

invariants that need to be mined in the next step. 

Secondly, this method finds out the invariants by a 

brute force search algorithm. Finally, each mined 

invariant candidate is validated by comparing its 

support with a threshold (e.g., supported by 98% of 

the event count vectors). This step will continue 

until r independent invariants are obtained. In 

anomaly detection based on invariants, when a new 

log sequence arrives, we check whether it obey the 

invariants. The log sequence will be reported as an 

anomaly if at least one invariant is broken. 

13. TOOL IMPLEMENTATION 
[1] implemented six anomaly detection methods 

in Python with over 4,000 lines of code and 

packaged them as a toolkit. For supervised methods, 

[1] utilizes a widely-used machine learning package, 

scikit-learn [13], to implement the learning models 

of Logistic Regression, Decision Tree, and SVM. 

There are plenty of parameters in SVM and 

logistic regression, and we manually tune these 

parameters to achieve the best results during 

training. For SVM, we tried different kernels and 

related parameters one by one, and we found that 

SVM with linear kernel obtains the better anomaly 

detection accuracy than other kernels. For logistic 

regression, different parameters are also explored, 

 

Fig. 4 - Principal Component Analysis 
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and they are carefully tuned to achieve the best 

performance. 

Implementing unsupervised methods, however, is 

not straightforward. For log clustering, [1] were not 

able to directly use the clustering API from scikit-

learn, because it is not designed for large-scale 

datasets, where our data cannot fit to the memory. 

We implemented the clustering algorithm into an 

online version, whereby each data instance is 

grouped into a cluster one by one. There are multiple 

thresholds to be tuned. We also paid great efforts to 

implement the invariants mining method, because 

we built a search space for possible invariants and 

proposed multiple ways to prune all unnecessary 

invariants. It is very time-consuming to test different 

combination of thresholds. [1] finally implemented 

PCA method according to the original reference 

based on the use of an API from scikit-learn. PCA 

has only two parameters and it is easy to tune. 

14. SUPERVISED METHODS 
EXPERIMENTAL DATASETS 

Log Datasets. Publicly available production logs 

are scarce data because companies rarely publish 

them due to confidential issues. Fortunately, by 

exploring an abundance of literature and intensively 

contacting the corresponding authors, [1] has 

successfully obtained two log datasets, HDFS data 

[17] and BGL data [12], which are suitable for 

evaluating existing anomaly detection methods. 

Both datasets are collected from production systems, 

with a total of 15,923,592 log messages and 365,298 

anomaly samples, that are manually labeled by the 

original domain experts. Thus, [1] took these labels 

(anomaly or not) as the ground truth for accuracy 

evaluation purposes. More statistical information of 

the datasets is provided in Table I. HDFS data 

contain 11,175,629 log messages, which were 

collected from Amazon EC2 platform [17]. HDFS 

logs record a unique block ID for each block 

operation such as allocation, writing, replication, 

deletion. Thus, the operations in logs can be more 

naturally captured by session windows, as 

introduced in III-B, because each unique block ID 

can be utilized to slice the logs into a set of log 

sequences. Then we extract feature vectors from 

these log sequences and generate 575,061 event 

count vectors. Among them, 16,838 samples are 

marked as anomalies. 

BGL data contain 4,747,963 log messages, which 

were recorded by the Blue Gene supercomputer 

system at Lawrence Livermore National Labs 

(LLNL) [12]. Unlike HDFS data, BGL logs have no 

identifier recorded for each job execution. Thus, we 

have to use fixed windows or sliding windows to 

slice logs as log sequences, and then extract the 

corresponding event count vectors. But the number 

of windows depends on the chosen window size 

(and step size). In BGL data, 348,460 log messages 

are labeled as failures, and a log sequence is marked 

as an anomaly if any failure logs exist in that 

sequence 

15. SUPERVISED METHODS ACCURACY 
RESULTS 

To explore the accuracy of supervised methods, 

we use them to detect anomalies on HDFS data and 

BGL data. [1] uses session windows to slice HDFS 

data and then generate the event count matrix, while 

fixed windows and sliding windows are applied to 

BGL data separately. In order to check the validity 

of three supervised methods (namely Logistic 

Regression, Decision Tree, SVM), we first train the 

models on training data, and then apply them to 

testing data. [1] reports both training accuracy and 

testing accuracy in different settings, as illustrated in 

Tables 1 - 4. We can observe that all supervised 

methods achieve high training accuracy (over 0.95), 

which implies that normal instances and abnormal 

instances are well separated by using our feature 

representation. However, their accuracy on testing 

data varies with different methods and datasets. The 

overall accuracy on HDFS data is higher than the 

accuracy on BGL data with both fixed windows and 

sliding windows. This is mainly because HDFS 

system records relatively simple operations with 

only 29 event types, which is much less than that in 

BGL data, which is 385. Besides, HDFS data are 

grouped by session windows, thereby causing a 

higher correlation between events in each log 

sequence. Therefore, anomaly detection methods on 

HDFS perform better than on BGL. 

16. USING HTM TO DETECT THE 
ANOMALIES 

There are a number of other restrictions that can 

make methods unsuitable for real-time streaming 

anomaly detection, such as computational 

constraints that impede scalability. An example is 

Lytics Anomalyzer [25], which runs in O(n2), 

limiting its usefulness in practice where streams are 

arbitrarily long. Dimensionality is another factor that 

can make some methods restrictive. For instance, 

online variants of principle component analysis 

(PCA) such as osPCA [26] or window-based PCA 

[27] can only work with high-dimensional, 

multivariate data streams that can be projected onto 

a low dimensional space. Techniques that require 

data labels, such as supervised classification-based 

methods [28], are typically unsuitable for real-time 

anomaly detection and continuous learning. On the 

other hand, Hierarchical Temporal Memory models 

are best suited for the streaming data by the nature 

of its architecture [18]. 
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Model-based approaches have been developed 

for specific use cases, but require explicit domain 

knowledge and are not generalizable. Domain-

specific examples include anomaly detection in 

Table 1. Supervised HDFS data set with session windows 

 

Supervised HDFS with session windows 

 

Training Testing 

 

Precision Recall F-measure Precision Recall F-measure 

Logistic 0.96 1 0.98 0.95 1 0.98 

Decision Tree 1 1 1 1 0.99 1 

SVM 0.96 1 0.98 0.95 1 0.98 

Table 2. Supervised BGL data set with fixed windows 

 

Supervised BGL with fixed windows 

 

Training Testing 

 

Precision Recall F-measure Precision Recall F-measure 

Logistic 0.99 1 1 0.95 0.57 0.71 

Decision Tree 1 1 1 0.95 0.57 0.72 

SVM 1 1 1 0.95 0.57 0.71 

Table 3. Supervised BGL data set with sliding windows 

 

Supervised BGL with sliding windows 

 

Training Testing 

 

Precision Recall F-measure Precision Recall F-measure 

Logistic 0.99 0.81 0.89 1 0.7 0.82 

Decision Tree 1 1 1 0.92 0.63 0.74 

SVM 1 1 1 0.99 0.75 0.85 

Table 4. Unsupervised HDF & BGL data sets 

  Unsupervised models on HDFS & BGL 

  HDFS BGL 

  Precision Recall F-measure Precision Recall F-measure 

Log Clustering 0.87 0.74 0.8 0.42 0.87 0.57 

Invariant Mining 0.88 0.95 0.91 0.83 0.99 0.91 

PCA 0.98 0.67 0.79 0.5 0.61 0.55 

 

 

Fig. 5 - HTM-based anomaly detection workflow 
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aircraft engine measurements [19], cloud datacenter 

temperatures [20], and ATM fraud detection [21]. 

Kalman filtering is a common technique, but the 

parameter tuning often requires domain knowledge 

and choosing specific residual error models [22 - 

24]. Model-based approaches are often 

computationally efficient but their lack of 

generalizability limits their applicability to general 

streaming applications. 

17. HTM BENCHMARK DATASET 
The aim of the dataset is to present algorithms 

with the challenges they will face in real-world 

scenarios, such as a mix of spatial and temporal 

anomalies, clean and noisy data, and data streams 

where the statistics evolve over time. The best way 

to do this is to provide data streams from real-world 

use cases, and from a variety of domains and 

applications. The data currently in the dataset 

represents a variety of sources, ranging from server 

network utilization to temperature sensors on 

industrial machines to social media chatter. 

Dataset (NAB) version 1.0 contains 58 data 

streams, each with 1000–22,000 records, for a total 

of 365,551 data points [29]. Also included are some 

artificially-generated data files that test anomalous 

behaviors not yet represented in the corpus's real 

data, as well as several data files without any 

anomalies. All data files are labeled, either because 

we know the root cause for the anomalies from the 

provider of the data, or as a result of the well-

defined NAB labeling procedure. These labels 

define the ground truth anomalies used in the NAB 

scoring process. 

Traditional scoring methods, such as precision 

and recall, don’t suffice because they don’t 

effectively test anomaly detection algorithms for 

real-time use. For example, they do not incorporate 

time and do not reward early detection. Therefore, 

the standard classification metrics – true positive 

(TP), false positive (FP), true negative (TN), and 

false negative (FN) are not applicable for evaluating 

algorithms for the above requirements. 

NAB includes three different application profiles: 

standard, reward low FPs, and reward low FNs. The 

standard profile assigns TPs, FPs, and FNs with 

relative weights (tied to the window size) such that 

random detections made 10% of the time would get 

a zero-final score on average. The latter two profiles 

accredit greater penalties for FPs and FNs, 

respectively. These two profiles are somewhat 

arbitrary but designed to be illustrative of algorithm 

behavior. The NAB codebase itself is designed such 

that the user can easily tweak the relative weights 

and re-score all algorithms. The application profiles 

thus help evaluate the sensitivity of detectors to 

specific applications criteria. The combination of 

anomaly windows, a smooth temporal scoring 

function (details in the next section), and the 

introduction of application profiles allows 

researchers to evaluate online anomaly detector 

implementations against the requirements of the 

ideal detector. Specifically, the overall NAB scoring 

system evaluates real-time performance, prefers 

earlier detection of anomalies, penalizes “spam” (i.e. 

FPs), and provides realistic costs for the standard 

classification evaluation metrics TP, FP, TN, and 

FN. 

Table 5 Streaming data anomaly detection results 

Detector Standard Profile Reward Low FP Reward Low FN 

Perfect 100 100 100 

Numenta HTM 70.5-69.7 62.6-61.7 75.2-74.2 

CAD OSE 69.9 67 73.2 

earthgecko Skyline 58.2 46.2 63.9 

KNN CAD 58 43.4 64.8 

Relative Entropy 54.6 47.6 58.8 

Random Cut Forest 51.7 38.4 59.7 

Twitter ADVec v1.0.0 47.1 33.6 53.5 

Windowed Gaussian 39.6 20.9 47.4 

Etsy Skyline 35.7 27.1 44.5 

Bayesian Changepoint 17.7 3.2 32.2 

EXPoSE 16.4 3.2 26.9 

Random 11 1.2 19.5 

Null 0 0 0 
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18. UNSUPERVISED METHODS 
ACCURACY RESULTS 

The scores are normalized such that the 

maximum possible is 100.0 (i.e. the perfect 

detector), and a baseline of 0.0 is determined by the 

"null" detector (which makes no detections) [29]. 

19. CONCLUSION 
Decision tree is more interpretable than the other 

two methods, as developers can detect anomalies 

with meaningful explanations (i.e., predicates in tree 

nodes). Logistic regression cannot solve linearly 

non-separable problems, which can be solved by 

SVM using kernels. However, parameters of SVM 

are hard to tune (e.g., penalty parameter), so it often 

requires much manual effort to establish a model. 

Unsupervised methods are more practical and 

meaningful due to the lack of labels. Log clustering 

uses the idea of online learning. Therefore, it is 

suitable for processing large volume of log data. 

Invariants mining not only can detect anomalies with 

a high accuracy, but also can provide meaningful 

and intuitive interpretation for each detected 

anomaly. However, the invariants mining process is 

time consuming. PCA is not easy to understand and 

is sensitive to the data. Thus, its anomaly detection 

accuracy varies over different datasets. 

The following findings have been made: 

• Supervised anomaly detection methods 

achieve high precision, while the recall varies over 

different datasets and window settings. 

• Anomaly detection with sliding windows 

can achieve higher accuracy than that of fixed 

windows. 

• Unsupervised methods generally achieve 

inferior performance against supervised methods. 

But invariants mining manifests as a promising 

method with stable, high performance. 

• The settings of window size and step size 

have different effects on supervised methods and 

unsupervised methods. 

• Most anomaly detection methods scale 

linearly with log size, but the methods of Log 

Clustering and Invariants Mining need further 

optimizations for speedup. 

• Anomalies detection in streaming, real-time 

applications generally better to handle using 
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