
Безпека інформаційних систем і технологій, № 1/2 (3/4), 2020

47

УДК 004.056
DOI https://doi.org/10.17721/ISTS.2020.4.48-52

О. І. Махович, orcid.org/0000-0002-4684-9881,
makhovych.oleksandr@univ.kiev.ua

Р. В. Миколайчук, orcid.org/0000-0001-5349-4487,
mykroman@ukr.net

Київський національний університет імені Тараса Шевченка, Київ, Україна
В. Г. Миколайчук, orcid.org/0000-0002-2532-5771,

mukwira@ukr.net

Державний університет телекомунікацій, Київ, Україна

РЕКОМЕНДАЦІЇ ЩОДО ВИБОРУ СПОСОБУ
БЕЗПЕЧНОГО ЗБЕРІГАННЯ ПАРОЛІВ

Використання паролів залишається найпоширенішим способом автентифікації користувачів для різного

роду інформаційних систем. У зв'язку із цим виникає задача забезпечення безпеки зберігання інформації, що

стосується даних автентифікації користувачів, та її захисту від несанкціонованого доступу. На практиці

набули широкого розповсюдження різноманітні алгоритми безпечного зберігання паролів. Взаємосуперечні

вимоги до таких алгоритмів безпечного зберігання паролів, які з одного боку мають бути достатньо складни-

ми для протидії різноманітним атакам, а з іншого – простими для забезпечення швидкодії інформаційної сис-

теми – перебору, особливо враховуючи те, що обчислювальна потужність центральних і графічних процесорів

постійно зростає. Тому виникає потреба мати можливість змінювати складність обчислення хеш-коду, а

отже й обсяг обчислень і час так, щоб значно ускладнити здійснення атаки, але не спричиняти дискомфорту

кінцевому користувачу через затримку перевірки достовірності пароля. Серед відомих способів безпечного

зберігання паролів розглянуто шифрування паролів, використання хеш-функції у класичному варіанті, а також

із додаванням солі та застосуванням ітерацій для обчислення хеш-коду. У роботі проведено порівняльний ана-

ліз наведених способів, установлено їхні переваги й недоліки, окреслено доцільні галузі застосування кожного

способу, розроблено відповідні рекомендації. Для проведення обчислювального експерименту використовували-

ся засоби платформи Microsoft .NET Core 3.1, що дало змогу встановити часові показники роботи алгоритму

отримання хеш-коду залежно від установлених параметрів алгоритму. Отримані за результатами експери-

менту дані можуть бути використані для вибору способу безпечного зберігання паролів.

Ключові слова: захист інформації; автентифікація користувача; шифрування; алгоритми обчислення хеш-
коду; обчислювальний експеримент.

1. ВСТУП

Використання паролів залишається найпоши-
ренішим способом автентифікації користувачів.
Для забезпечення безпеки зберігання інформації
та її захисту від несанкціонованого доступу на-
були широкого розповсюдження алгоритми без-
печного зберігання паролів [1–3]. Водночас для
уникнення можливості компрометації інформа-
ційної системи під впливом зовнішніх загроз,
необхідно підвищувати складність зазначеного
алгоритму. З іншого боку, надмірне ускладнення
процедури автентифікації призводить до зни-
ження швидкості роботи системи. У сукупності
наведені взаємосуперечні вимоги до алгоритмів
безпечного зберігання паролів складають актуа-
льну наукову проблему, одному з елементів якої,

а саме дослідженню способів безпечного збері-
гання паролів, присвячена ця стаття. Метою
статті є обґрунтування рекомендацій щодо вибо-
ру способу безпечного зберігання паролів.

2. СПОСОБИ ЗБЕРІГАННЯ ПАРОЛІВ

Як зазначено раніше, важливим аспектом за-

стосування парольної автентифікації є безпечне

зберігання паролів. Для забезпечення зазначеної

функції інформаційної системи використовують

способи, що будуть розглянуті далі.

2.1. ШИФРУВАННЯ ПАРОЛІВ

Шифрування є звичним засобом забезпе-

чення конфіденційності інформації. Цей про-

цес передбачає застосування двох процесів:

© Махович О. І., Миколайчук Р. В., Миколайчук В. Г., 2020

https://doi.org/10.17721/ISTS.2020.4.48-52

Information Systems and Technologies Security, № 1/2 (3/4), 2020

48

зашифровування та розшифровування даних із

використанням секретного ключа. Шифруван-

ня може бути застосоване для зберігання паро-

лів, але при цьому можуть виникнути певні

труднощі й задачі:

 організація керування ключами;
 забезпечення надійного зберігання секрет-

ного ключа;
 визначення обмеження доступу клієнтсь-

кого додатку до секретного ключа для шифру-
вання пароля перед його відправкою на сервер;

 організація безпечної передачі ключів.

Таблиця 1
Хеш-функції, доступні в .NET Core

Алгоритм
Розмір хешу

(байт)
Опис

MD5
(Message Digest

Algorithm)
16

Не рекомендується
для нових проєктів,
оскільки нестійкий

до колізій, але
швидкий у роботі

SHA1
(Secure Hashing

Algorithm)
20

Використання
в інтернеті не

рекомендується
з 2011 р.

SHA256
SHA384
SHA512

(Secure Hashing
Algorithm)

32
48
64

Алгоритми із сім'ї
"Безпечний алго-
ритм хешування

другого покоління"
із різними розміра-

ми хеш-значень

Відсутність необхідності використовувати від-
критий пароль та складність управління ключами
шифрування ставить під сумнів оптимальність
застосування шифрування для організації безпе-
чного зберігання паролів та може породити за-
грози інформаційній безпеці. У випадку компро-
метації секретного ключа та таблиці паролів,
зловмисник може отримати повний доступ до
всієї інформації.

2.2. ХЕШУВАННЯ ПАРОЛІВ

Криптографічна хеш-функція H є однобічним
перетворенням бітового рядка M довільної дов-
жини на бітовий рядок (блок) фіксованої довжи-
ни h [1]. Вона має такі властивості [2]:

1) хеш-код повинен легко обчислюватися для
довільного вхідного повідомлення;

2) результат роботи хеш-функції має залежати
від усіх двійкових символів вихідного повідом-
лення, а також від їхнього взаємного розташу-
вання (незначна зміна вхідного повідомлення має
призводити до тотальної зміни значення хеш-
функції – так званий "лавинний ефект"). Значен-
ня хеш-коду не повинно давати витоку інформа-
ції навіть про окремі біти аргументу;

3) хеш-функція має бути стійкою до віднов-
лення прообразу (односторонність) – відсутність
практичної можливості за прийнятний час від-
творити повідомлення M за його хеш-кодом h
так, щоб H(M) = h;

4) хеш-функція має бути стійкою до виник-
нення колізій:

 стійкість до колізій першого роду: для за-
даного повідомлення M має бути неможливо за
допомогою обчислень за прийнятний час піді-
брати інше повідомлення N, для якого
H(N) = H(M);

 стійкість до колізій другого роду: має бути
неможливо за допомогою обчислень підібрати
пару повідомлень (M, N) і M ≠ N таких, що мають
однаковий хеш H(M) = H(N).

На платформі Microsoft .NET Core є доступ-
ними для використання [3] реалізації декількох
алгоритмів хешування (табл. 1). Обираючи алго-
ритм хешування, потрібно враховувати два важ-
ливих фактори:

1) стійкість до колізій;
2) стійкість до знаходження прообразу.
Використання хеш-функцій є поширеним для

підтримки цілісності даних, проте їхнє застосу-
вання для зберігання паролів може породжувати
певні загрози інформаційній безпеці.

Оскільки хеш-функція для однакових вхідних
даних повертає ідентичний хеш-код, то зловмис-
ник може використати словник найбільш ужива-
ніших паролів для атаки або генерувати їх про-
грамно. При цьому для кожного ймовірного па-
роля послідовно обчислюється хеш-код і порів-
нюється з атакованим хеш-кодом.

Такий підхід вимагає значних обчислюваль-
них ресурсів, тому інший тип атаки передбачає
використання величезних масивів наперед обчи-
слених хеш-кодів (так званих райдужних таб-
лиць) для різноманітних паролів. Пошук аргуме-
нту для хеш-функції в цьому випадку може від-
буватися надзвичайно швидко [4].

2.3. ДОДАВАННЯ "СОЛІ"

Атаки на хеш можливі лише тому, що обчис-
лення хеш-кодів здійснюється кожного разу іде-
нтичним способом. Якщо для кожного пароля
спосіб обчислення хешу модифікувати випадко-
вим чином, то можна уникнути вразливості до
атак із використанням райдужних таблиць. У
цьому випадку доцільно додавати до пароля до-
даткову ентропію у вигляді криптографічно стій-
кої послідовності випадкових значень, яку нази-
вають сіллю [5].

Сіль додається до пароля перед обчисленням
хеш-коду. Тому навіть якщо двоє різних користу-
вачів використають однаковий пароль, хеш-коди у

Безпека інформаційних систем і технологій, № 1/2 (3/4), 2020

49

них будуть різні. У випадку, коли сіль для кожного
пароля генерується окремо й ніколи не використо-
вується повторно, зловмисник не зможе наперед
обчислити райдужні таблиці та скористатися ними
для атаки. Оскільки сіль потрібно використовувати
при обчисленні хешу для введеного пароля корис-
тувача, то її зберігають, як правило, у базі даних
поряд з хеш-кодом, або як частину хеш-коду.

2.4. СТАНДАРТ PBKDF2

Використання солі при обчисленні хеш-коду
пароля дозволяє уникнути вразливості з викори-
станням райдужних таблиць. Але загроза прямо-
го перебору залишається, особливо враховуючи
те, що обчислювальна потужність центральних і
графічних процесорів постійно зростає. Тому
виникає потреба мати можливість змінювати
складність обчислення хеш-коду, а отже й обсяг
обчислень та час так, щоб значно ускладнити
здійснення атаки, але не спричиняти дискомфор-
ту кінцевому користувачу через затримку пере-
вірки достовірності пароля.

Таке ускладнення обчислень досягається ви-
користанням спеціальних повільних алгоритмів
обчислення хеш-коду, наприклад, PBKDF2
(Password-Based Key Derivation Function) [6].
PBKDF2 генерує похідний ключ, базуючись на
основному ключі та додаткових параметрах. У
ролі головного ключа виступає пароль, а додат-
ковими параметрами є сіль та кількість ітерацій
обчислення хеш-коду функцією, що лежить в
основі алгоритму:

DK = PBKDF2 (P, S, c, dkLen),

де P – пароль, S – "сіль", c – кількість ітерацій,
dkLen – довжина похідного ключа, DK – похід-
ний ключ.

Для дослідження залежності часу, необхідно-
го для обчислення хеш-коду пароля, від кількості
ітерацій проведено серію обчислювальних екс-
периментів.

Для цього створено консольний додаток на
платформі Microsoft .NET Core 3.1, у якому для
кожного базового алгоритму хешування та кожної
кількості ітерацій проводилося 10 послідовних
обчислень зі знаходження хеш-коду пароля. При
цьому фіксувався час у мілісекундах, необхідний
для виконання обчислень. Для фіксування часу
обчислень використовувалися функції Start(),
Stop() і властивість ElapsedMilliseconds класу
Stopwatch із простору імен System.Diagnostics. Як
результат обирали середнє арифметичне отрима-
них значень затраченого часу. Експерименти по-
вторювали для кількості ітерацій від 10000 до
1280000, де кожне наступне значення обиралося
вдвічі більше за попереднє.

Для генерації солі використовувався клас
RNGCryptoServiceProvider із простору імен
System.Security.Cryptography. Довжина солі ста-
новила 32 байти.

Обчислення хеш-коду за алгоритмом PBKDF2
виконувалося за допомогою функції GetBytes()
класу Rfc2898DeriveBytes простору імен
System.Security.Cryptography.

Для базових алгоритмів SHA1, SHA256,

SHA384 та SHA512 були обрані ефективні довжи-

ни згенерованого хеш-коду 20, 32, 48 та 64 байти

відповідно (табл. 2).

Таблиця 2

Результати обчислювальних експериментів

Базова
функція

хешування

Довжина
хеш-коду

(байт)

Кількість
ітерацій

Середнє
значення

витраченого
часу (мс)

SHA1 20

1,00E+04 22,20

2,00E+04 25,40

4,00E+04 38,40

8,00E+04 77,50

1,60E+05 132,00

3,20E+05 244,70

6,40E+05 473,40

1,28E+06 793,80

SHA256 32

1,00E+04 27,10

2,00E+04 27,80

4,00E+04 60,40

8,00E+04 144,50

1,60E+05 246,10

3,20E+05 504,90

6,40E+05 854,30

1,28E+06 1262,80

SHA384 48

1,00E+04 35,50

2,00E+04 42,00

4,00E+04 76,90

8,00E+04 155,20

1,60E+05 276,60

3,20E+05 544,10

6,40E+05 933,50

1,28E+06 1497,30

SHA512 64

1,00E+04 28,70

2,00E+04 29,90

4,00E+04 80,90

8,00E+04 157,70

1,60E+05 289,70

3,20E+05 556,50

6,40E+05 887,70

1,28E+06 1480,70

Information Systems and Technologies Security, № 1/2 (3/4), 2020

50

Для кожного із зазначених алгоритмів за до-
помогою комп'ютерного моделювання визначено
числові характеристики часу роботи алгоритму,
залежно від установленої кількості ітерацій об-
числення хеш-коду.

Обираючи кількість ітерацій для обчислення
хеш-коду пароля за алгоритмом PBKDF2, потріб-
но враховувати, що при автентифікації користу-
вачів буде зростати час відгуку сервера, що може
спричинити негативне враження на користувача.
Справді, для кожного випадку автентифікації по-
трібно буде обчислювати хеш-код для введеного
пароля і порівнювати його з хеш-кодом, що збері-
гається у базі даних. Тому для інформаційних
систем із великою інтенсивністю взаємодій із
користувачами потрібно дотримуватися балансу
між надійністю зберігання паролів і продуктивні-
стю всієї системи (рисунок).

Рисунок. Графік залежності часу, необхідного
для знаходження хеш-коду за алгоритмом PBKDF2,

від кількості ітерацій

3. РЕКОМЕНДАЦІЇ ЩОДО ВИБОРУ

СПОСОБІВ ЗБЕРІГАННЯ ПАРОЛІВ

На основі наведених у попередньому розділі
статті результатів, можливо запропонувати такі
рекомендації щодо вибору способу безпечного
зберігання паролів:

1. Шифрування паролів слід використовувати
лише в інформаційних системах, для яких крити-
чно важливим є забезпечення можливості відно-
влення оригінального пароля.

2. Використання “класичної” хеш-функції є
доцільним в успадкованих інформаційних систе-
мах для забезпечення сумісності, або у системах,

де критичною є швидкість обчислень. Причому
рекомендується застосовувати алгоритми SHA256,
SHA384, SHA512.

3. Розмір солі для хешування має бути не
менше ефективної довжини згенерованого хеш-
коду, для кожного випадку вона має генерувати-
ся окремо у вигляді криптографічно стійкої пос-
лідовності випадкових значень, одна й та ж сіль
ніколи не повинна використовуватися повторно.

4. Для найбільш критичних до стійкості від
зовнішніх атак додатків доцільно обирати алго-
ритм PBKDF2 хешування паролів, як досить гну-
чкий у налаштуваннях і порівняно стійкий до
різного роду атак на хеш-код, у цьому разі кіль-
кість ітерацій має забезпечувати достатню обчи-
слювальну складність для уникнення атаки пря-
мим перебором, але разом із тим не переванта-
жувати власний сервер.

4. ВИСНОВКИ

Таким чином у результаті дослідження прове-
дено порівняльний аналіз відомих способів без-
печного зберігання паролів, установлено їхні
переваги й недоліки, експериментально визначе-
но часові показники застосування алгоритму
стандарту PBKDF2, окреслено доцільні галузі
застосування кожного способу.

Це дало змогу запропонувати рекомендації,
які можливо використовувати для вибору спосо-
бу зберігання паролів, залежно від типу інфор-
маційної системи та важливості даних, що в ній
зберігаються.

Отримані за результатами обчислювального
експерименту дані можуть бути використані для
вибору способу безпечного зберігання паролів.

Подальші дослідження доцільно проводити у
напрямку створення моделей оцінювання ефек-
тивності способів зберігання паролів в інформа-
ційних системах.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

[1] Н. Смарт. Криптография, Техносфера, Москва,
2005, 528 с.

[2] Stephen Haunts, Applied Cryptography in .NET and
Azure Key Vault. A Practical Guide to Encryption in .NET and
.NET Core, Apress, Berkeley, CA, 2019, 228 p.

[3] Microsoft documentation, [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/api/system.security.
cryptography.hashalgorithmname?view=netcore-3.1

[4] Salted Password Hashing – Doing it Right, [Online].
Available: https://crackstation.net/hashing-security.htm

[5] Yasser M. Alginahi, Muhammad Nomani Kabir,
Authentication Technologies for Cloud Computing, IoT and Big
Data, The Institution of Engineering and Technology, London,
UK, 2019, 354 p.

[6] RFC2898 PKCS #5: Password-Based Cryptography
Specification, Version 2.0, [Online]. Available:
https://tools.ietf.org/html/rfc2898

Стаття надійшла до редколегії 17.11.2020

0

200

400

600

800

1000

1200

1400

1600

Ч
ас

, м
с

Кількість ітерацій

Залежність часу обчислення хеш-коду

від кількості ітерацій

SHA1 SHA256 SHA384 SHA512

Безпека інформаційних систем і технологій, № 1/2 (3/4), 2020

51

Recommendations for choosing a method
of safe storage of passwords

Using passwords remains the most common way to authenticate users for various types of information systems. This

poses the challenge of securing the storage of user authentication information and protecting it from unauthorized

access. In practice, various algorithms for secure password storage have become widespread. Mutually contradictory

requirements for such algorithms for secure password storage, which on the one hand must be complex enough to coun-

ter various attacks, and on the other – simple to ensure the speed of the information system – determine the relevance of

the study. There is a significant threat of direct search, especially given the fact that the computing power of CPUs and

GPUs is constantly growing. Therefore, there is a need to be able to change the complexity of the hash code calcula-

tion, and therefore the amount of computation and time so as to significantly complicate the attack, but not cause dis-

comfort to the end user due to the delay in password verification. Among the known methods of secure password stor-

age are password encryption, the use of the hash function in the classical version, as well as the addition of salt and the

use of iterations to calculate the hash code. The comparative analysis of the given methods is carried out in the work,

their advantages and disadvantages are established, expedient areas of application of each method are outlined, the

corresponding recommendations are developed. For the computational experiment, the tools of the Microsoft .NET

Core 3.1 platform were used, which made it possible to set the time indicators of the hash code generation algorithm

depending on the set parameters of the algorithm. The data obtained from the experiment can be used to select a

method of securely storing passwords.

Keywords: information protection; user authentication; encryption; hash code calculation algorithms; computational

experiment.

Олександр Махович,

кандидат технічних наук, асистент

кафедри мережевих та інтернет-

технологій факультету інформаційних
технологій Київського національного

університету імені Тараса Шевченка.

Olexander Mahovich,

Candidate of Technical Sciences, Assistant

of the Department of Network and Internet
Technologies, Faculty of Information

Technologies, Taras Shevchenko National

University of Kyiv.

Віра Миколайчук,

асистент кафедри інформаційних систем

та технологій інституту інформаційних

технологій Державного університету

телекомунікацій.

Vira Mykolaichuk,

Assistant of the Department of Information

Systems and Technologies of the Institute

of Information Technologies of the State
University of Telecommunications.

Роман Миколайчук,

доктор технічних наук, доцент, доцент

кафедри мережевих та інтернет-

технологій факультету інформаційних
технологій Київського національного

університету імені Тараса Шевченка.

Roman Mykolaichuk,

Dr. Tech. Sciences, Associate Professor,

Associate Professor of the Department of
Network and Internet Technologies,

Faculty of Information Technology, Taras

Shevchenko National University of Kyiv.

