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PROTECTION MODEL AGAINST DISTRIBUTED GRADUAL DEGRADATION ATTACKS
BASED ON STATISTICAL AND SEMANTIC APPROACHES

Background. Nowadays, every critical sector of social institutions conducts its operations on top of distributed processing
systems. Contemporary digital infrastructure heavily relies on user-provided datain its operation. As aresult, distributed attacks based
on botnets are in a continuous state of arms race with the protection methods that filtrate malicious data influx. A common method to
do so often relies on heuristics and human-oriented verifications. As the new advancements in the field of artificial intelligence emerge,
such attacks adopt new oblique paths towards achieving their goals. The successful execution of the said plan could lead to a gradual
resource depletion on the target system. The purpose of this research is to address such threats with a combination of statistical and
semantic approaches.

Methods. The following research conducts a theoretical analysis and systematization of the distributed gradual degradation
attack in distributed systems and its implication in the context of the evolving technologies of artificial intelligence. Mathematical
modeling is leveraged to define the proposed model's properties and execution process. The proposed model heavily relies on
statistical methods for analyzing time series data and its deviations, as well as classification neural networks for semantic detection of
suspicious behavior.

Results. Asaresult of the following research, a new model is developed that leverages statistical and semantical verification
for anomaly detection. The continuous monitoring and detection process is optimized towards highly loaded systems with a constant
flurry of data streams.

Conclusions. Sincethedistributed attacks could be potentially equipped with intelligent means to bypass existing security
measures, the development of a protection model against potential resource leaks is gaining relevance. The recent success in the
development of artificial generative intelligence leads to raising concerns about the safety and adequacy of the current security
measures against automation-based distributed attack vectors. It is often a case that the protection models are inclined towards
prevention of the attack rather than recovery. This approach, while targeting the source of risks, often leads to complacent design
decisions without considering the potential outcomes of a successful breach. The proposed model provides a theoretical foundation
for building systems that both react to the active execution of threats and perform recovery mechanisms, assuming that the attack
may potentially bypass initial security measures.

Keywords: distributed systems, gradual degradation attacks, resource exhaustion, statistical analysis, semantic approaches,
resilience, LightGBM, Distilbert, EWMA.

Background Additionally, mutating requests could be further split
The majority of contemporary cloud and distributed into categories of idempotent and cumulative state-
systems work on top of a client-server model. Within the changing interactions. Where the first guarantees that any
context of such an approach, the server expects requests subsequent operation of the same nature will result in the
from a client system to initiate an interaction process. Once same state of the system. As a matter of fact, the
the message is received, the service nodes perform idempotent category spans between a subset of mutating

desired computation and resource allocation as defined and the whole set of transient requests. Each subsequent
per operational logic. It is often a case for such RPC or transient request does not change the state at all, hence

HTTP endpoints to have an authentication system in place leaving it the same after an arbitrary amount of requests of
that relies on multi-factor human interaction verification by the same nature. Whereas cumulative state operations
involving multiple external services or identification gradually modify the shared state and always impact the
credentials, such as phone number. Nonetheless, it is also allocation of computational assets in one way or another.
a common approach to have a dedicated public subset of Service providers could be categorized into two
services since it could be useful to provide a succinct categories: stateful and stateless systems. Stateless
demonstration of the system's capabilities or simply used systems typically rely on providing transient services. Such
to request initial access rights. systems are extremely scalable and easy to coordinate
In that context, it is important to emphasize the since no consensus is required. In addition to that, they do
difference between transient and mutation requests. not rely on persistent resource allocation and utilize
Transient requests are executed on a stateless basis. exclusively dynamic operational hardware. Stateful
Each subsequent request does not influence the system's systems are characterized by their operational
state nor the results of any subsequent execution. Such uniqueness. Interaction with such a system could involve

requests often rely on data reads or real-time computation the allocation or deallocation of persistent resources,
rather than deferred, asynchronous execution or static mainly storage. It is usually the case that within a single
storage services. Mutating requests involve the allocation distributed system that provides a complex multi-step
or creation of additional computational or storage assets service, there are sets of both categories.

as per the request's parameters. These requests could be Having established the context of interaction-driven
generalized further by including state changes of non- services, we can now discuss the security implications and
persistent logical resources. An example of such could be attack vectors for each described processing model. In the
rate limits for external services. context of this article, automation-based distributed attacks
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are in the limelight of the research. The most common
and known attack of such type is Deny of Service (DOS)
and its invariant Distributed Deny of Service (DDOS). The
origins of this attack took root in the times of developing
global interconnection networks. Its implications,
strategies, and modern protection mechanisms are well
studied and defined in numerous scientific works
(Mirkovic, & Reiher, 2004; Douligeris, & Mitrokotsa, 2004;
Srivastava et al., 2011; Zargar, Joshi, & Tipper, 2013;
Zhang, Wang, & Chen, 2017). DOS is characterized by
its aggressive nature and is applicable to every type of
request described previously.

Though the impact could differ greatly between
mutating and transient requests, the primary goals are
generally the same: overwhelm the target system with a
barrage of nonsensical computational tasks to stifle or
preclude execution of concurrent legitimate processing
threads. The congestion often leads to temporal
downtimes, loss of reputation, trust, and, as a result, of
fungible assets. The protection methods often involve
massive cloud networks with innate capabilities of service
masking and traffic distribution. Such networks often rely
on pattern-recognition models to differentiate between
authentic and malicious packet streams.

In contrast, this article aims to define a potential new
attack vector that is more subtle and clandestine. The
Distributed Gradual Degradation attack does not rely on
aggressive bombardment of the target systems. It relies on
the gradual creation and execution of mutative cumulative
requests that incrementally reduce the system's capacity
to provide a service. Since it's not based on congestion
surge, it's less conspicuous and is more likely to be
executed successfully. The said attack is inefficient for
transient and has limited efficiency on idempotent requests
since they by definition have a limited impact on the
system's state. The common approach to fending off
automated requests is based on human authenticity
verification based on interaction heuristics, such as mouse
moves or choices made.

With the recent development of generative artificial
intelligence and its ever-improving qualities, a new arms
race between such challenge-based approaches and their
automated solution is ongoing. Al models are potentially
capable of mimicking human behavior and decision-
making processes to a sufficient degree to bypass current
identification methods. This led to the development of yet
more confounding challenges with multiple logical steps.
Though with a rapid evolution of the generative Als, it
remains unclear whether those measures are sufficient
(Hernandez-Castro et al., 2017; Kovacs, & Tajti, 2023;
Sukhani et al., 2021).

The purpose of the article. The intention and goal of
this research is to develop a theoretical protection model
against the distributed gradual degradation attack vector.
This article aims to provide a solid set of active and passive
measures towards ensuring adequate usage of the
system's resources by external requests. Within the scope
of this research, we consider and outline the integration of
the aforementioned protection model within the context of
streaming asynchronous communication services and
static storage engines.

The key principles that form the foundation of this
model are efficiency and a knowledge-based approach.
The first principle is straightforward: as the model aims
to protect resources, it should rationally utilize them
itself. The latter means that ability should be tapered
towards capabilities of classification neural networks in
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juxtaposition to generative Als. The reasoning behind this
approach stems from the significant computational
complexity involved in developing and training these
models. The training and execution of generative models
require exponentially more time than that of classification
models. Hence, the attack becomes ineffectual since it
would require more sources than it would seemingly
degrade on a target machine.

Analysis of literary sources. The distributed gradual
degradation attack vector enhanced by recent
developments and improvements in artificial intelligence
is not extensively studied as of now but is a looming topic
of scientific research. Nevertheless, its foundational
components, such as bypassing contemporary bot
detection systems, and its implications are growing
rapidly in relevance.

Active research on DDOS has been ongoing since the
early 2000s. Significant contributions towards attack
definition, classification, and potential prevention methods
are provided by the works of (Mirkovic, & Reiher, 2004;
Douligeris, & Mitrokotsa, 2004; Srivastava et al., 2011;
Zhang, Wang, & Chen, 2017).

With the development of deep learning models,
computer vision, and artificial intelligence in general,
common protection methods against automation-based
attacks become increasingly susceptible. In that direction,
impactful research results were published by (Na et al.,
2020; Sukhani, et al.,, 2021; Kovacs, & Tajti, 2023;
Hernandez-Castro et al., 2017).

Improving detection model efficiency involves statistical
estimation and evaluation of time series data. Exponentially
Weighted Moving Average (EWMA) is described within the
works of (Hunter, 1986; Lucas & Saccucci, 1990; Cox,
1961). The Integrated Moving Average (ARIMA) method
and its implications are outlined by (Box, & Pierce, 1970;
Nelson, 1998). Semantic detection in the context of
phishing attacks is assessed by the following studies:
(Buchyk et al., 2024; Buchyk, Shutenko, & Toliupa, 2022;
Toliupa et al., 2023). The authors provide and describe
models of detecting suspicious contents of emails with a
set of semantic methods such as cosine distance between
data-driven vectors.

Classification neural networks serve as the backbone
of the proposed model. Their key feature is a simplified and
efficient training process that is exponentially faster than
that of the generative Als. The significance and operational
basis of such technology are described within the works of
(zhang, Zhang, & Yu, 2017). Decision trees LightGBM and
XGBoost are described within works of (Leevy et al., 2020;
Zhao, Wang, & Wang, 2023). Last, but not least, the
language processing model Distilbert is assessed and
studied by (Adoma, Henry, & Chen, 2020; Buyukoz,
Hiirriyetoglu, & Ozgiir, 2020).

Methods

The following research conducts a theoretical analysis
and systematization of the distributed gradual degradation
attack in distributed systems and its implication in the
context of the evolving technologies of artificial
intelligence. Mathematical and graphic modeling are
leveraged to define the proposed model's properties and
execution process. The proposed model heavily relies on
statistical methods for analyzing time series data and its
deviations, as well as classification neural networks for
semantic detection of suspicious behavior.

This work additionally describes an exemplary
architecture of a target distributed system that utilizes
static-storage and stream-oriented services to outline an
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integration of the proposed model in the workloads
based on different processing paradigms. Since most
contemporary distributed systems utilize queuing and
asynchronous communication models, the implications
and middleware-oriented integration method of the
developed protection model are described within the
context of the streaming architectures. Additionally, this
paper outlines the external monitoring-oriented integration
of the said protection model for the static data warehouses
analysis and resource deallocation.

Results

The following section presents a novel theoretical
model of protection against distributed gradual degradation
attacks. We will initially outline the statistical approach
towards detecting anomalies. After that, we will delve into
the application of a neural network for deep semantical
scanning of suspicious activity spikes. This theoretical
model will later be applied to an exemplary distributed
system's architecture. First and foremost, we will describe
the architecture itself, its services, and intercommunication
methods. After that, an integration plan for the static data
storage engines and real-time streaming services will be
provided to facilitate integration of the proposed method
into modern distributed systems.

Protection model against distributed gradual
degradation attacks. The automated activity detection
model is comprised of multiple parts. Firstly, it defines
the global and internal timeframe segregation and
boundaries to achieve better performance results. Based
on those intervals, an Exponentially Weighted Moving
Average (EWMA) method is used to control the degree
of suspiciousness. That degree influences the
aggressiveness of semantic scanning.

We will first start with the management aspect of the
proposed model. Let us define time parameters:

= T: Total timeline over which data (incoming
requests) are observed.

= t: Specific time point within T.

= R(t): Set of records (incoming requests) at time t.

= W: Size of the sliding window (in time units).

=  W(t): Sliding window at time t, containing records
fromt — W to t.

The interval parameters are expressed as:

= G, Size of each global interval (Global Interval Size).

= ;. Size of each internal interval within a global
interval (Internal Interval Size).

* G;: The i-th global interval, G; = [(i — 1)G;, iG;).

I; ;. The j-th internal interval within
GirIi,j = [(l - 1)65 + (] - 1)15, (i - 1)Gs +jls)-

= n;: Number of internal intervals per global interval,
n; = GS/IS'

Semantic sampling parameters are defined as follows:

= ng Initial number of samples per global interval
(Num_Samples) (0 < ng < n;).

= Ts: Sampling threshold (Sampling Threshold),
expressed as a percentage.

= «: Smoothing factor for EWMA (0 < a<1).

= [B: Sensitivity factor for adjusting the number of
samples based on statistical anomalies.

= §: Sensitivity factor for adjusting the number of
samples based on semantic anomalies.

N; ;: Number of records in internal interval I; ;.
" Nyta;: TOtal number of records in global interval G;.
At any time t:

W® ={R(s) It—W <s <t}. 1)

The sliding function defines a set of records that are
being buffered and evaluated. It practically limits the
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resources allocated to the detection model and provides
a granular control for environments with different memory
capacities. The sliding function continuously moves in
time and contains a set of the most recent records. This
function could also be used to establish a retrospective
analysis by propelling the window backwards in time
rather than forward.
The entire timeline T is divided into global intervals:

Gi = [(1 - l)Gs' iGS)' (2)

Global intervals allow set boundaries for semantic
sampling strategy. Since semantic sampling is computationally
heavy, as we will see later on, it is important to use it as a
last resort rather than brute force. Records are assigned to
these intervals based on timestamps.

Each global interval G; is subdivided into n; internal
intervals:

;= [(i—1DG+ (G — DI, (i — 1)Gg + 1),
j = 1,2, W, Ny

i€N.

©)

Internal discretization is another aspect of performance
improvement. It allows limiting sampling size to a
controlled set of records. The combinations of these
parameters allow to manage the risks and resource
utilization, where the latter is of high importance because
the entire purpose of the model is to save resources.

Moving on the semantic sampling, the dynamic number
of samples for time t is defined as follows:

ns(t) = ns + [B x D(O)]. 4

Where D(t) is the degree of anomalies detected at time
t; [] is a ceiling function to ensure an integer number of
samples. This approach allows to continuously react in
stochastic environments.

Statistical approach based on EWMA is used to
manage ng(t) and react efficiently to ongoing security
events at each time t (Cox 1961, p. 414; Hunter, 1986,
p. 203; Lucas, & Saccucci, 1990, p. 1):

= Compute the average number of records in the
sliding window:

x = 2, (5)
= where Ny, (t) = [W(t)].
= Update EWMA:
EWMA(t) = ax; + (1 — ©)EWMA(t — 1), (6)
= Compute the deviation:
D(t) = |x, — EWMAC(t)|. (7)

An anomaly is detected if D(t) exceeds a predefined
anomaly threshold A;. The number of samples ng(t) is
adjusted dynamically in real time as shown in equation 4.

The sampling is done at random for ng internal
timeframes. Let us first define utility functions:

" Ppo:(™): R - [0,1] a function that maps each record
r € R to a probability P,..(r), where Py, (r) represents the
likelihood that record r is bot-origin. We will discuss its
definition later.

= A(r): activation function outputs 1 if Pyo () = Tyor,
and 0 otherwise.

* Ty IS the threshold for determining bot-origin.

The process itself is defined as follows:

For k = 1to ng(t):

* Randomly select an internal interval [; j, within G;.

= Collect records R, j, in I;

= Compute N;j, = |R;

Jke

il
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= Foreachre€R,;,, do:

e Apply the semantic recognition function Py (r),
which returns a probability from 0 to 1 that the
record is bot-origin.

» Compute the output of the activation function:

A(I‘)= {1 if Pbot(r) = Tbot
0 if Pbot(r) < Tbot ’

= Compute the total number of likely bot-origin entries

®)

inl;j, as:
Bij = Zrer,;, A, 9)
= Evaluate the sampling condition:
i T, (10)

Nij,
= If the condition is met increment ng(t) by §
(increase sampling rate).

= Else continue to the next sample without adjusting
ng(t).

This process allows the algorithm to react and adjust
itself depending on events inside stochastic environments.
This model is also highly customizable, allowing for
different threshold and resource management parameters.

Semantic sampling model. Now let's move on the
discussion of P,..(r) and its definition. Firstly, the model
processes input data consisting of structured features x;
and textual content x,. The structured data x, € R™, where
m is the number of structured features, is transformed into
a feature vector h, € R% through a function fiozm (Ke et
al., 2017, p. 3149; Leevy et al., 2020, p. 190; Zhao, Wang,
Y., & Wang, J., 2023, p. 622):

hg = fiam(Xs)- (11)

Function fiqgm represents the processing performed by
a LightGBM model. LightGBM is a gradient boosting
decision-tree model that maps the structured input x; to a
learned feature representation h; of dimension ds. The
output of that function is a high-dimensional vector that
captures features of the provided data.

Simultaneously, the textual data x; is mapped to an
embedding vector h, € R%* using a function fpisiierT
(Adoma, Henry, & Chen, 2020, p. 117; Biyilkdz,
Hiirriyetoglu, & Ozgiir, 2020, p. 9; Dogra et al., 2021, vol. 248):

(12)

In this case, fpisuigert represents the DistiiBERT model,
which processes raw text and converts it into a contextual
embedding of dimension d,. DistiiBERT is a transformer-
based language model that captures the semantic
meaning and contextual nuances of the textual data and
provides a dense vector representation h;.

The key factors while choosing the models were
performance, accuracy, and their ratio. Since the main goal
is to preserve resources and reduce costs, the decision
was made towards most efficient available models.

The feature vectors hg and h; are then concatenated to
form a combined feature vector h, € R%:

— hS

h = [h]

Where d =d; +d, is the total dimensionality after
concatenation.

The combined feature vector h, serves as the input to
a sequence of L fully connected layers. Each layer [ in this

he = fpistiert (X0)-

(13)
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sequence performs a linear transformation followed by a
non-linear activation function ¢, the ReLU (Rectified Linear
Unit) (Arora et al., 2018).

Forl = 1toL:

. Linear transformation:

7O = wDZ0-D 4 O (14)
= Activation function:
a® = cb(z(l)) = maX(O,z(D). (15)

Where:

» WO e gt s the weight matrix for layer [.

= p® g R is the bias vector for layer L.

= a1 s the activated output from the previous
layer (with a©® = n,).

= n; is the number of neurons in layer L.

= ny = d is the size of the input layer.

After processing through the L fully connected layers,
the model applies a final linear transformation followed by
a sigmoid activation to produce the output probability §
(Arora et al., 2018; Pratiwi et al., 2020, vol. 1471):

. Linear transformation:

7L+ — LADTHM) 4 pOL+D) , (16)
= Sigmoid activation:
PN 1
y= G(Z(L+1)) = D" a7

1+e

Where:

= wl+D e Rm js the weight vector for the output
layer.

= T signifies that the matrix is transposed.

= pU+D e R s the bias scalar for the output layer.

= The sigmoid function o maps the input to a
probability between 0 and 1.

The overall function of the model can be summarized as:

¥ = fnodel (X5, X¢) =
=0 (W(L+1)T (¢, 0.0 ¢‘(W(1)hc + b(l))) + b(L+1)).

Where:

" fiodel FEPresents the composition of the LightGBM
processing of structured data, the DistiiBERT processing
of textual data, and the subsequent fully connected layers
leading to the final output.

= o denotes function composition.

= ¢ isthe activation function applied at each hidden layer.

This architecture essentially fuses two lightweight
models that concern separate tasks to produce a
probabilistic answer whether the data is a part of an
automation-based attack. Messages that arrive at the
server's endpoints are often structured and have multiple
sensical fields. Such fields often hold textual, categorical,
and numerical data types. Different models perform better
on different data types and provide corresponding
accuracy rates. DistiiBERT is used to extract complex
features from textual data, while LightGBM is used for
categorical and numeric data.

The concrete applied definition of the model involves
specifying a number of neurons in each fully connected
layer through a tuple, such as (512,256,128). The shown
structure defines three layers with 512, 256, and 128
neurons. In this case, the dimensions of the weight
matrices and bias vectors would be:

- W(l) 1= RE]IZXdl b(l) 1= RE]IZ;

- W(Z) 1= RZE@XSHZ’ b(Z) € RZS(E);

(18)
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. W(3) € R128x256 b(3) € R128.

= w®eR28 p@W gpR,
The combined vector h. is passed through L fully

connected layers with RelLU activations, computing
outputsinacyclefor! = 1toL:
20 = w®al-D 4+ p® 19)
a® = ¢(z®) = max(0,zV)

The final output is computed using a linear
transformation followed by a sigmoid activation (Thakur &
Dhawale):

L+1) — LD, L) 4 pL+D)
{Z w a‘') +b (20)

y — 0.(Z(L+1))

1st WEB Server

Client Application
load balancer

@
Application level \

1st API Server

l

Message Queue

1st Asynchronous worker

The model parameters, including the weights and
biases of the fully connected layers and any trainable
parameters within f;ggm and fpisiigerT, are optimized during
training to minimize the binary cross-entropy loss. This
enables the model to make accurate predictions based on
the input data and learning from both structured and textual
information that could be passed to the system through the
common communication structures, such as JSON.

Description of a target distributed system. Having
defined the protection model against distributed gradual
degradation attacks based on continuous monitoring and
semantic sampling, let us now discuss its applied
integration into contemporary distributed systems. With the
theoretical context, parameters, and model properties in
place, we first outline the architecture of the distributed
system depicted on Fig. 1:

n-th WEB Server

=

1st Data Warehouse shard

=

n-th Data Warehouse shard

n-th AP Server

—&

Storage router

n-th Asynchronous worker

Fig. 1. Architecture of the target distributed system

This architecture represents an abstract system that
uses the most common data flow methods: storage and
stream-oriented. It consists of the application-level load
balancer that routes the requests to the APl and WEB
servers based on the request paths. Subsequently, API
servers could either perform a state-mutating operation in
the data warehouse or initiate an asynchronous task
through the means of queueing services. The common
approach for building such workflows involves AMQP
protocol (Prajapati, 2021).

Protection model application for data warehouse
services. The data warehouse service is responsible for

uS,
. &‘
E,-,e

1-th API Server

n-th AP| Server

/@\

1st Data Warehouse shard

. %\: Storage router \ A/SmmgE -
e
\_\c_,\(\

persistent storage, processing, and retrieval of information.
It is often the case that such services are extremely hard
to scale and are also the backbone of the stateful
distributed system. Having said that, due to the extreme
requirements for availability and consistency, it is important
to integrate the protection model without impacting the
response times and minimize influence on the overall
performance. Fig. 2 shows the integration architecture with
the persistent storage service:

e

\)e‘\ m
Ry

ot

1-st Resource audit worker

Al

0

g g, e,
s

n-st Resource audit worker

JeuUURYD UOREZIUOIYOUAS JASY

n-th Data Warehouse shard

Fig. 2. Proposed model's integration as an asynchronous monitoring solution
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The architecture reflects an asynchronous, batch-
processing approach towards resource utilization audits
and protection gains distributed through gradual degradation
attacks. The key principle is to allow flowless execution of
requests and after that schedule retrospective tasks to
verify the authenticity and validity of the mutations. For that
purpose, the external "resource audit workers" perform the
algorithm described within the protection model. Since the
sliding window W (t) is itself a parameter, it is possible to
initialize such batch tasks in the required context.

Moreover, contemporary production systems tend to
grow extensively in size. For that purpose, the service
clusterization could be performed based on the Replica
State Discovery Protocol (RSDP). RSDP provides a
lightweight and efficient framework to coordinate cluster-
wide operations execution and state management. Each

node within such a cluster could leverage the deterministic
parameters and based on its cluster position, schedule its
sliding window accordingly (Kotov, Toliupa, & Nakonechnyi,
2024, p. 102; p. 156). Such an approach is efficient in terms
of processing power and yet allows for scaling if needed.

Protection model application for data queueing and
streaming services. The message queuing services
primarily work in an "eventually transient mode". That is,
these services do not save data for too long, often until the
message processing is confirmed by a connected worker.
These services are most frequently utilized for asynchronous
and deferred operations. Which implies that the response
time is not an issue, allowing for the middleware-oriented
architecture. Figure 3 shows the integration architecture
with the message streaming service:

1st AP| Server

Middleware Queue

n-th API Server

1-st Resource Audit WOA
\ Message Queue \

n-st Resource Audit Worker

1st Asynchronous worker

n-th Asynchronous worker

Fig. 3. Proposed model's integration as a middleware monitoring solution

Before the target message queue, this architecture
implies the middleware queue for analytical and security
processing. The entire model described earlier would be
executed inside the "resource audit worker". Scalability in
this case is trivial and does not require any coordination
mechanism since the logic would entirely mirror the target
queue's message processing infrastructure. Upon receiving
new messages, the sliding would operate on a real-time
basis and directly control the stored buffer size during the
runtime. The message processing is often coordinated and
distributed between the workers in a round-robin manner,
thus effectively integrating load balancing capabilities for
both the protection model's worker execution and the target
logic itself (Prajapati, 2021).

Discussion and conclusions

Since the distributed attacks could be potentially
equipped with intelligent means to bypass existing security
measures, the development of a protection model against
potential resource leaks is gaining relevance. The recent
success in the development of artificial generative
intelligence leads to raising concerns about the safety and
adequacy of the current security measures against
automation-based distributed attack vectors. It is often a
case that the protection models are inclined towards
prevention of the attack rather than recovery. This approach,
while targeting the source of risks, often leads to complacent
design decisions without considering the potential outcomes
of a successful breach. The proposed model provides a
theoretical foundation for building systems that both react to
the active execution of threats and perform recovery
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mechanisms, assuming that the attack may potentially
bypass initial security measures.

While developing the protection model against the
gradual degradation attacks, the primary concern was
twofold: ensuring that the system is capable of recovering
from unexpected resource loss and ensuring that the
detection and monitoring processes themselves don't
require a superfluous amount of processing power. The
primary focus was on the integration of the model within the
operation context of streaming and static storage services.
As a result, a set of diagrams, mathematical models, and
theoretical descriptions is provided to simplify implementation
of the said model in modern distributed systems.

The proposed model heavily relies on the semantic
feature extraction capabilities of both decision trees and
the neural networks. Even though LightGBM and
Distilbert are both regarded as extremely fast models,
tuned towards performance and memory usage, it is still
a case that the execution of the trained model takes a
significant amount of resources. That is why the proposed
protection model focuses on the logical optimization
based on global and internal timeframe discretization and
statistical methods such as EWMA to reduce as much as
possible the number of execution calls of the pretrained
models for the semantic sampling.

To address the issue of efficiency with static data
warehouse analysis, the proposed model utilizes global
and internal discretization of the timeframes. This
approach allows it to coordinate its operation in a batch-
oriented way. The scalability of such a solution is hence
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possible by leveraging deterministic scheduling properties.
Each monitoring node, knowing its own position in a
replica, can effectively determine its assigned timeframes.
In that context, the integration of RSDP provides an
essential capability to organize a deterministic approach by
synchronizing states between cluster nodes.

While addressing streaming services, this paper
considers thoroughly the capabilities provided by queueing
protocols such as AMQP. The introduction of middleware
gueues allows us to analyze suspicious messages in real-
time. Additionally, the proposed scaling model involves
logical extensions for exchanges that allow for statistical
analysis and avoid redundant verification logic invocation.
This approach significantly enhances the potential
efficiency of the proposed model.

To summarize, the proposed model provides a solid and
efficient theoretical foundation for managing intelligent
threats towards digital and processing resources. Its
implications necessitate continuous monitoring of emerging
zero-day attacks that may easily bypass modern security
measures. It is the intention of this article to inspire further
empirical research, impact assessment of distributed
gradual degradation attacks and their mitigation methods.

Authors' contribution: Maksym Kotov — conceptualization,
methodology, formal analysis, development of software; Serhii
Toliupa — analysis of sources, preparation of a literature review
and theoretical foundations of research, editing and reviewing.
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MO[LEJIb 3AXUCTY BIAl PO3MNOANEHNX ATAK NOCTYNOBOIO BUCHAXEHHA PECYPCIB,
3ACHOBAHA HA CTATUCTUYHUX | CEMAHTUYHUX NIAXOOAX

BcTyn. HuHi KOXXeH Kpumu4YHO eaxsueuli cekmop coyianbHuUX iHcmumyuyili UKOHye ceoi onepauii Ha ocHoei po3nodineHux cucmem
o6pobneHHsi. CyyacHa yudgpposa iHghpacmpykmypa y ceoili po6omi 3HayHOIO Mipoto noknadaemscsi Ha OaHi, o Hadaromb Kopucmyeadyi. B
pe3ynbmami, po3nodineHi amaku Ha ocHoei 6omHemie nepebyesatomb y 6e3nepepeHuUX "nepezoHax 036poeHL" i3 Memodamu 3axucmy, sKi
inbmpyroms Hadxo0xeHHs wkidnueux daHux. Memodu npomudii Yacmo noknadarombcsi Ha e8PUCMUYHI crocobu nepesipku, opieHmMoeaHi Ha
NI0OUHY. 3 nosieoro Hoeux OOCsi2HEHb y cgbepi wmy4yHo20 iHmenekmy, maki amaku Habyearomb dodamkoei wsixu Aocsi2HeHHs1 ceoix yined.
YcniwHe euKkoHaHHS1 3a3Ha4eHO20 M/aHy MoOXe rnpu3eecmu Ao MOCMYNno8020 BUCHaXXeHHS pecypcie yinboeoi cucmemu. Memor yboz2o
docnio)XeHHs1 € Hama2aHHS YHUKHYMU makux 3a2po3 3a oroMo20t0 noedHaHHsA cmamucmuy4HuX i ceMaHmMu4yHux nioxodie.

MeTtoaun. Le docnidxeHHss npoeodums meopemuyHull aHani3 i cucmemamusayiro po3nodineHoi amaku Mocmyrnoeo2o 8UCHaXeHHS
pecypcie y po3nodineHux cucmemax i ii 3Ha4eHHs1 8 KOHmMeKcmi mexHonoezili wmy4yHo2o0 iHmenekmy, ujo poseusaromncsi. MamemamuyHe
MoOeso8aHHs1 eUKopucmosyromb Ol 8U3Ha4YeHHs1 eflacmueocmeli 3anponoHoeaHoi Modeni 3axmcmy, npoyecy if iHmeapayii ma eUKOHaHHs1.
3anponoHoeaHa Modesib 3Ha4YHOK Mipoto Noknadaembcsi Ha cmamucmuY4Hi Memodu Ons1 aHanizy Yyacoeux psidie ma ixHix eidxuneHb, a MaKkox
KnacudpikayiliHi HelUpOHHI Mepexi Onsi ceMaHMUYHO20 8usierIeHHs1 nNido3pinoi noeediHku.

PesynbTatu. Y pesynbmami ybo2o docnidxeHHs1 po3pobrieHo Hosy MoOesb, sika 8UKOPUCMOBYE CMamucmuyHy ma ceMaHmuy4Hy
nepeeipky 0ns eusiesnieHHs1 aHomannil. [poyec 6e3nepepeHO20 MOHIMOPUH2Y onMuMi3oeaHuli 0711 BUCOKOHagaHMaXXeHUX cucmem i3 nocmitiHum
wKeasnom rnomokie daHux.

BucHoBKkU. Ockinbku po3nodineHi amaku Moxymb 6ymu ocHaweHi iHmenekmyanbHUMu 3acobamu dnsi 06xody icHyroqux 3axodie
6e3neku, mo po3pobrieHHs1 modesi 3axucmy ei0 momeHyiliHux eumokie pecypcie Habyeae akmyanbHocmi. Bidomul HeujodaeHili ycnix y
PO3po6rieHHi WmMy4yHO20 2eHepamueHo20 iHmesniekKmy 8UK/IUKae 3aHeNnoKoeHHs1 uyo0o 6e3neku Ui adekeamHocmi MomoYyHux 3axodie 6ezneku
npomu eekmopie po3nodineHux amak Ha ocHoei aemomamus3auyii. Yacmo 6yeae mak, wjo modesi 3axucmy HanawmoeaHi Ha 3anobizaHHs1 Hanady,
a He Ha eidHoeneHHs. lleli nidxid, ujo opiecHmoeaHuli Ha Axepeno 36umkie, Yacmo npu3zeodumb A0 MPOEKMHUX pileHb 6e3 ypaxyeaHHs
nomeHyiliHux pe3ynbmamie ycrniwHo20 nopyueHHsi. 3anpornoHoeaHa mModesnb 3abe3neyye meopemuy4Hy OCHO8Y OJisi CMBOPEHHsI cucmem, sKi
0JdHOYacHO pea2ylomb Ha aKmueHe 8UKOHaHHSI 3a2po3 i 6UKOHYIOMb MeXaHi3Mu eiOHOB/IeHHS], MPUMYCKalo4u, W0 amaka MomeHyiliHo Moxe
06ilimu noyamkoei 3axodu 6e3neku.

KnwouyoBi cnoBa: po3nodineHi cucmemMu, amaku nocmynoeo2o 8UCHaXEHHSI pecypcie, 8UCHaXKeHHs1 pecypcie, cmamucmuyHuli
aHanis, ceMaHmuyHi nioxodu, cmilikicms, LightGBM, Distilbert, EWMA.
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