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PROTECTION MODEL AGAINST DISTRIBUTED GRADUAL DEGRADATION ATTACKS 

BASED ON STATISTICAL AND SEMANTIC APPROACHES 
 

B a c k g r o u n d .  Nowadays, every critical sector of social institutions conducts its operations on top of distributed processing 
systems. Contemporary digital infrastructure heavily relies on user-provided data in its operation. As a result, distributed attacks based 
on botnets are in a continuous state of arms race with the protection methods that filtrate malicious data influx. A common method to 
do so often relies on heuristics and human-oriented verifications. As the new advancements in the field of artificial intelligence emerge, 
such attacks adopt new oblique paths towards achieving their goals. The successful execution of the said plan could lead to a gradual 
resource depletion on the target system. The purpose of this research is to address such threats with a combination of statistical and 
semantic approaches. 

M e t h o d s .  The following research conducts a theoretical analysis and systematization of the distributed gradual degradation 
attack in distributed systems and its implication in the context of the evolving technologies of artificial intelligence. Mathematical 
modeling is leveraged to define the proposed model's properties and execution process. The proposed model heavily relies on 
statistical methods for analyzing time series data and its deviations, as well as classification neural networks for semantic detection of 
suspicious behavior. 

R e s u l t s .  As a result of the following research, a new model is developed that leverages statistical and semantical verification 
for anomaly detection. The continuous monitoring and detection process is optimized towards highly loaded systems with a constant 
flurry of data streams. 

C o n c l u s i o n s .  Since the distributed attacks could be potentially equipped with intelligent means to bypass existing security 
measures, the development of a protection model against potential resource leaks is gaining relevance. The recent success in the 
development of artificial generative intelligence leads to raising concerns about the safety and adequacy of the current security 
measures against automation-based distributed attack vectors. It is often a case that the protection models are inclined towards 
prevention of the attack rather than recovery. This approach, while targeting the source of risks, often leads to complacent design 
decisions without considering the potential outcomes of a successful breach. The proposed model provides a theoretical foundation 
for building systems that both react to the active execution of threats and perform recovery mechanisms, assuming that the attack 
may potentially bypass initial security measures. 

 

K e y w o r d s :  distributed systems, gradual degradation attacks, resource exhaustion, statistical analysis, semantic approaches, 
resilience, LightGBM, Distilbert, EWMA. 

 
Background 
The majority of contemporary cloud and distributed 

systems work on top of a client-server model. Within the 
context of such an approach, the server expects requests 
from a client system to initiate an interaction process. Once 
the message is received, the service nodes perform 
desired computation and resource allocation as defined 
per operational logic. It is often a case for such RPC or 
HTTP endpoints to have an authentication system in place 
that relies on multi-factor human interaction verification by 
involving multiple external services or identification 
credentials, such as phone number. Nonetheless, it is also 
a common approach to have a dedicated public subset of 
services since it could be useful to provide a succinct 
demonstration of the system's capabilities or simply used 
to request initial access rights. 

In that context, it is important to emphasize the 
difference between transient and mutation requests. 
Transient requests are executed on a stateless basis. 
Each subsequent request does not influence the system's 
state nor the results of any subsequent execution. Such 
requests often rely on data reads or real-time computation 
rather than deferred, asynchronous execution or static 
storage services. Mutating requests involve the allocation 
or creation of additional computational or storage assets 
as per the request's parameters. These requests could be 
generalized further by including state changes of non-
persistent logical resources. An example of such could be 
rate limits for external services. 

Additionally, mutating requests could be further split 
into categories of idempotent and cumulative state-
changing interactions. Where the first guarantees that any 
subsequent operation of the same nature will result in the 
same state of the system. As a matter of fact, the 
idempotent category spans between a subset of mutating 
and the whole set of transient requests. Each subsequent 
transient request does not change the state at all, hence 
leaving it the same after an arbitrary amount of requests of 
the same nature. Whereas cumulative state operations 
gradually modify the shared state and always impact the 
allocation of computational assets in one way or another. 

Service providers could be categorized into two 
categories: stateful and stateless systems. Stateless 
systems typically rely on providing transient services. Such 
systems are extremely scalable and easy to coordinate 
since no consensus is required. In addition to that, they do 
not rely on persistent resource allocation and utilize 
exclusively dynamic operational hardware. Stateful 
systems are characterized by their operational 
uniqueness. Interaction with such a system could involve 
the allocation or deallocation of persistent resources, 
mainly storage. It is usually the case that within a single 
distributed system that provides a complex multi-step 
service, there are sets of both categories. 

Having established the context of interaction-driven 
services, we can now discuss the security implications and 
attack vectors for each described processing model. In the 
context of this article, automation-based distributed attacks 
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are in the limelight of the research. The most common 
and known attack of such type is Deny of Service (DOS) 
and its invariant Distributed Deny of Service (DDOS). The 
origins of this attack took root in the times of developing 
global interconnection networks. Its implications, 
strategies, and modern protection mechanisms are well 
studied and defined in numerous scientific works 
(Mirkovic, & Reiher, 2004; Douligeris, & Mitrokotsa, 2004; 
Srivastava et al., 2011; Zargar, Joshi, & Tipper, 2013; 
Zhang, Wang, & Chen, 2017). DOS is characterized by 
its aggressive nature and is applicable to every type of 
request described previously. 

Though the impact could differ greatly between 
mutating and transient requests, the primary goals are 
generally the same: overwhelm the target system with a 
barrage of nonsensical computational tasks to stifle or 
preclude execution of concurrent legitimate processing 
threads. The congestion often leads to temporal 
downtimes, loss of reputation, trust, and, as a result, of 
fungible assets. The protection methods often involve 
massive cloud networks with innate capabilities of service 
masking and traffic distribution. Such networks often rely 
on pattern-recognition models to differentiate between 
authentic and malicious packet streams. 

In contrast, this article aims to define a potential new 
attack vector that is more subtle and clandestine. The 
Distributed Gradual Degradation attack does not rely on 
aggressive bombardment of the target systems. It relies on 
the gradual creation and execution of mutative cumulative 
requests that incrementally reduce the system's capacity 
to provide a service. Since it's not based on congestion 
surge, it's less conspicuous and is more likely to be 
executed successfully. The said attack is inefficient for 
transient and has limited efficiency on idempotent requests 
since they by definition have a limited impact on the 
system's state. The common approach to fending off 
automated requests is based on human authenticity 
verification based on interaction heuristics, such as mouse 
moves or choices made. 

With the recent development of generative artificial 
intelligence and its ever-improving qualities, a new arms 
race between such challenge-based approaches and their 
automated solution is ongoing. AI models are potentially 
capable of mimicking human behavior and decision-
making processes to a sufficient degree to bypass current 
identification methods. This led to the development of yet 
more confounding challenges with multiple logical steps. 
Though with a rapid evolution of the generative AIs, it 
remains unclear whether those measures are sufficient 
(Hernández-Castro et al., 2017; Kovács, & Tajti, 2023; 
Sukhani et al., 2021). 

The purpose of the article. The intention and goal of 
this research is to develop a theoretical protection model 
against the distributed gradual degradation attack vector. 
This article aims to provide a solid set of active and passive 
measures towards ensuring adequate usage of the 
system's resources by external requests. Within the scope 
of this research, we consider and outline the integration of 
the aforementioned protection model within the context of 
streaming asynchronous communication services and 
static storage engines. 

The key principles that form the foundation of this 
model are efficiency and a knowledge-based approach. 
The first principle is straightforward: as the model aims  
to protect resources, it should rationally utilize them  
itself. The latter means that ability should be tapered 
towards capabilities of classification neural networks in 

juxtaposition to generative AIs. The reasoning behind this 
approach stems from the significant computational 
complexity involved in developing and training these 
models. The training and execution of generative models 
require exponentially more time than that of classification 
models. Hence, the attack becomes ineffectual since it 
would require more sources than it would seemingly 
degrade on a target machine. 

Analysis of literary sources. The distributed gradual 
degradation attack vector enhanced by recent 
developments and improvements in artificial intelligence 
is not extensively studied as of now but is a looming topic 
of scientific research. Nevertheless, its foundational 
components, such as bypassing contemporary bot 
detection systems, and its implications are growing 
rapidly in relevance. 

Active research on DDOS has been ongoing since the 
early 2000s. Significant contributions towards attack 
definition, classification, and potential prevention methods 
are provided by the works of (Mirkovic, & Reiher, 2004; 
Douligeris, & Mitrokotsa, 2004; Srivastava et al., 2011; 
Zhang, Wang, & Chen, 2017). 

With the development of deep learning models, 
computer vision, and artificial intelligence in general, 
common protection methods against automation-based 
attacks become increasingly susceptible. In that direction, 
impactful research results were published by (Na et al., 
2020; Sukhani, et al., 2021; Kovács, & Tajti, 2023; 
Hernández-Castro et al., 2017). 

Improving detection model efficiency involves statistical 
estimation and evaluation of time series data. Exponentially 
Weighted Moving Average (EWMA) is described within the 
works of (Hunter, 1986; Lucas & Saccucci, 1990; Cox, 
1961). The Integrated Moving Average (ARIMA) method 
and its implications are outlined by (Box, & Pierce, 1970; 
Nelson, 1998). Semantic detection in the context of 
phishing attacks is assessed by the following studies: 
(Buchyk et al., 2024; Buchyk, Shutenko, & Toliupa, 2022; 
Toliupa et al., 2023). The authors provide and describe 
models of detecting suspicious contents of emails with a 
set of semantic methods such as cosine distance between 
data-driven vectors. 

Classification neural networks serve as the backbone 
of the proposed model. Their key feature is a simplified and 
efficient training process that is exponentially faster than 
that of the generative AIs. The significance and operational 
basis of such technology are described within the works of 
(Zhang, Zhang, & Yu, 2017). Decision trees LightGBM and 
XGBoost are described within works of (Leevy et al., 2020; 
Zhao, Wang, & Wang, 2023). Last, but not least, the 
language processing model Distilbert is assessed and 
studied by (Adoma, Henry, & Chen, 2020; Büyüköz, 
Hürriyetoğlu, & Özgür, 2020). 

Methods 
The following research conducts a theoretical analysis 

and systematization of the distributed gradual degradation 
attack in distributed systems and its implication in the 
context of the evolving technologies of artificial 
intelligence. Mathematical and graphic modeling are 
leveraged to define the proposed model's properties and 
execution process. The proposed model heavily relies on 
statistical methods for analyzing time series data and its 
deviations, as well as classification neural networks for 
semantic detection of suspicious behavior. 

This work additionally describes an exemplary 
architecture of a target distributed system that utilizes 
static-storage and stream-oriented services to outline an 
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integration of the proposed model in the workloads  
based on different processing paradigms. Since most 
contemporary distributed systems utilize queuing and 
asynchronous communication models, the implications 
and middleware-oriented integration method of the 
developed protection model are described within the 
context of the streaming architectures. Additionally, this 
paper outlines the external monitoring-oriented integration 
of the said protection model for the static data warehouses 
analysis and resource deallocation. 

Results 
The following section presents a novel theoretical 

model of protection against distributed gradual degradation 
attacks. We will initially outline the statistical approach 
towards detecting anomalies. After that, we will delve into 
the application of a neural network for deep semantical 
scanning of suspicious activity spikes. This theoretical 
model will later be applied to an exemplary distributed 
system's architecture. First and foremost, we will describe 
the architecture itself, its services, and intercommunication 
methods. After that, an integration plan for the static data 
storage engines and real-time streaming services will be 
provided to facilitate integration of the proposed method 
into modern distributed systems. 

Protection model against distributed gradual 
degradation attacks. The automated activity detection 
model is comprised of multiple parts. Firstly, it defines  
the global and internal timeframe segregation and 
boundaries to achieve better performance results. Based 
on those intervals, an Exponentially Weighted Moving 
Average (EWMA) method is used to control the degree  
of suspiciousness. That degree influences the 
aggressiveness of semantic scanning. 

We will first start with the management aspect of the 
proposed model. Let us define time parameters: 

▪ 𝑇: Total timeline over which data (incoming 
requests) are observed. 

▪ 𝑡: Specific time point within 𝑇. 
▪ 𝑅(𝑡): Set of records (incoming requests) at time 𝑡. 
▪ 𝑊: Size of the sliding window (in time units). 
▪ 𝑊(𝑡): Sliding window at time 𝑡, containing records 

from 𝑡 −  𝑊 to 𝑡. 
The interval parameters are expressed as: 
▪ 𝐺𝑠: Size of each global interval (Global Interval Size). 
▪ 𝐼𝑠: Size of each internal interval within a global 

interval (Internal Interval Size). 
▪ 𝐺𝑖: The 𝑖-th global interval, 𝐺𝑖 = [(𝑖 − 1)𝐺𝑠,  𝑖𝐺𝑠). 
▪ 𝐼𝑖,𝑗: The 𝑗-th internal interval within  

𝐺𝑖 , 𝐼𝑖,𝑗 = [(𝑖 − 1)𝐺𝑠 + (𝑗 − 1)𝐼𝑠,  (𝑖 − 1)𝐺𝑠 + 𝑗𝐼𝑠). 

▪ 𝑛𝐼: Number of internal intervals per global interval, 
𝑛𝐼 = 𝐺𝑠/𝐼𝑠. 

Semantic sampling parameters are defined as follows: 
▪ 𝑛𝑠: Initial number of samples per global interval 

(𝑁𝑢𝑚_𝑆𝑎𝑚𝑝𝑙𝑒𝑠) ( 0 <  𝑛𝑠 ≤ 𝑛𝐼 ). 
▪ 𝑇𝑠: Sampling threshold (𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), 

expressed as a percentage. 
▪ α: Smoothing factor for EWMA ( 0 <  α ≤ 1 ). 
▪ β: Sensitivity factor for adjusting the number of 

samples based on statistical anomalies. 
▪ δ: Sensitivity factor for adjusting the number of 

samples based on semantic anomalies. 
▪ 𝑁𝑖,𝑗: Number of records in internal interval 𝐼𝑖,𝑗. 

▪ 𝑁total,𝑖: Total number of records in global interval 𝐺𝑖. 

At any time 𝑡: 

W(t) = {R(s) ∣ t − W ≤ s ≤ t}.                      (1) 

The sliding function defines a set of records that are 
being buffered and evaluated. It practically limits the 

resources allocated to the detection model and provides 
a granular control for environments with different memory 
capacities. The sliding function continuously moves in 
time and contains a set of the most recent records. This 
function could also be used to establish a retrospective 
analysis by propelling the window backwards in time 
rather than forward. 

The entire timeline 𝑇 is divided into global intervals: 

Gi = [(i − 1)Gs,  iGs),  i ∈ N.                     (2) 

Global intervals allow set boundaries for semantic 
sampling strategy. Since semantic sampling is computationally 
heavy, as we will see later on, it is important to use it as a 
last resort rather than brute force. Records are assigned to 
these intervals based on timestamps. 

Each global interval 𝐺𝑖 is subdivided into 𝑛𝐼 internal 
intervals: 

𝐼𝑖,𝑗 = [(𝑖 − 1)𝐺𝑠 + (𝑗 − 1)𝐼𝑠,  (𝑖 − 1)𝐺𝑠 + 𝑗𝐼𝑠),            (3) 

𝑗 = 1,2, … , 𝑛𝐼 . 

Internal discretization is another aspect of performance 
improvement. It allows limiting sampling size to a 
controlled set of records. The combinations of these 
parameters allow to manage the risks and resource 
utilization, where the latter is of high importance because 
the entire purpose of the model is to save resources. 

Moving on the semantic sampling, the dynamic number 
of samples for time 𝑡 is defined as follows: 

𝑛𝑠(𝑡) = 𝑛𝑠 + ⌈𝛽 × 𝐷(𝑡)⌉.                             (4) 

Where 𝐷(𝑡) is the degree of anomalies detected at time 
𝑡; ⌈⋅⌉ is a ceiling function to ensure an integer number of 
samples. This approach allows to continuously react in 
stochastic environments. 

Statistical approach based on EWMA is used to 
manage 𝑛𝑠(𝑡) and react efficiently to ongoing security 
events at each time 𝑡 (Cox 1961, p. 414; Hunter, 1986,  
p. 203; Lucas, & Saccucci, 1990, p. 1): 

▪ Compute the average number of records in the 
sliding window: 

xt =
NW(t)

W
 ,                                           (5) 

▪ where 𝑁𝑊(𝑡) = |𝑊(𝑡)|. 
▪ Update EWMA: 

EWMA(t) = αxt + (1 − α)EWMA(t − 1),               (6) 

▪ Compute the deviation: 

𝐷(𝑡) = |𝑥𝑡 − EWMA(𝑡)|.                             (7) 

An anomaly is detected if 𝐷(𝑡) exceeds a predefined 
anomaly threshold 𝐴𝑇. The number of samples 𝑛𝑠(𝑡) is 
adjusted dynamically in real time as shown in equation 4. 

The sampling is done at random for 𝑛𝑠 internal 
timeframes. Let us first define utility functions: 

▪ 𝑃bot(𝑟): 𝑅 → [0,1] a function that maps each record 
𝑟 ∈ 𝑅 to a probability 𝑃bot(𝑟), where 𝑃bot(𝑟) represents the 
likelihood that record 𝑟 is bot-origin. We will discuss its 
definition later. 

▪ A(r): activation function outputs 1 if 𝑃bot(𝑟) ≥ 𝑇bot, 
and 0 otherwise. 

▪ 𝑇bot: is the threshold for determining bot-origin. 
The process itself is defined as follows: 
For 𝑘 =  1 to 𝑛𝑠(𝑡): 
▪ Randomly select an internal interval 𝐼𝑖,𝑗𝑘

 within 𝐺𝑖. 

▪ Collect records 𝑅𝑖,𝑗𝑘
 in 𝐼𝑖,𝑗𝑘

. 

▪ Compute 𝑁𝑖,𝑗𝑘
= |𝑅𝑖,𝑗𝑘

|. 
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▪ For each 𝑟 ∈ 𝑅𝑖,𝑗𝑘
, do: 

• Apply the semantic recognition function 𝑃bot(𝑟), 
which returns a probability from 0 to 1 that the 
record is bot-origin. 

• Compute the output of the activation function: 

A(r)= {
1  if 𝑃bot(r)  ≥ 𝑇bot

0  if 𝑃bot(𝑟)  < 𝑇bot
 ,                         (8) 

▪ Compute the total number of likely bot-origin entries 
in 𝐼𝑖,𝑗𝑘

 as: 

Bi,jk
= ∑ A(r)r∈Ri,jk

 ,                              (9) 

▪ Evaluate the sampling condition: 

Bi,jk

Ni,jk

> 𝑇𝑠 ,                                     (10) 

▪ If the condition is met increment 𝑛𝑠(𝑡) by 𝛿 
(increase sampling rate). 

▪ Else continue to the next sample without adjusting 
𝑛𝑠(𝑡). 

This process allows the algorithm to react and adjust 
itself depending on events inside stochastic environments. 
This model is also highly customizable, allowing for 
different threshold and resource management parameters. 

Semantic sampling model. Now let's move on the 
discussion of 𝑃bot(𝑟) and its definition. Firstly, the model 

processes input data consisting of structured features 𝑥𝑠 
and textual content 𝑥𝑡. The structured data 𝑥𝑠 ∈ 𝑅𝑚, where 
𝑚 is the number of structured features, is transformed into 

a feature vector ℎ𝑠 ∈ 𝑅𝑑𝑠 through a function 𝑓LGBM (Ke et 
al., 2017, p. 3149; Leevy et al., 2020, p. 190; Zhao, Wang, 
Y., & Wang, J., 2023, p. 622): 

hs = fLGBM(xs).                                   (11) 

Function 𝑓LGBM represents the processing performed by 
a LightGBM model. LightGBM is a gradient boosting 
decision-tree model that maps the structured input 𝑥𝑠 to a 
learned feature representation ℎ𝑠 of dimension 𝑑𝑠. The 
output of that function is a high-dimensional vector that 
captures features of the provided data. 

Simultaneously, the textual data 𝑥𝑡 is mapped to an 

embedding vector ℎ𝑡 ∈ 𝑅𝑑𝑡 using a function 𝑓DistilBERT 
(Adoma, Henry, & Chen, 2020, p. 117; Büyüköz, 
Hürriyetoğlu, & Özgür, 2020, p. 9; Dogra et al., 2021, vol. 248): 

ht = fDistilBERT(xt).                                 (12) 

In this case, 𝑓DistilBERT represents the DistilBERT model, 
which processes raw text and converts it into a contextual 
embedding of dimension 𝑑𝑡. DistilBERT is a transformer-
based language model that captures the semantic 
meaning and contextual nuances of the textual data and 
provides a dense vector representation ℎ𝑡. 

The key factors while choosing the models were 
performance, accuracy, and their ratio. Since the main goal 
is to preserve resources and reduce costs, the decision 
was made towards most efficient available models. 

The feature vectors 𝒉𝒔 and 𝒉𝒕 are then concatenated to 

form a combined feature vector ℎ𝑐 ∈ 𝑅𝑑: 

hc = [
𝐡𝐬

𝐡𝐭
].                                          (13) 

Where 𝑑 = 𝑑𝑠 + 𝑑𝑡 is the total dimensionality after 
concatenation. 

The combined feature vector 𝒉𝒄 serves as the input to 
a sequence of 𝐿 fully connected layers. Each layer 𝑙 in this 

sequence performs a linear transformation followed by a 
non-linear activation function ϕ, the ReLU (Rectified Linear 
Unit) (Arora et al., 2018). 

For 𝑙 =  1 to 𝐿: 
▪ Linear transformation: 

z(l) = W(l)a(l−1) + b(l),                           (14) 

▪ Activation function: 

a(l) = ϕ(z(l)) = max(0, z(l)).                      (15) 

Where: 

▪ 𝑊(𝑙) ∈ 𝑅𝑛𝑙×𝑛𝑙−𝟙 is the weight matrix for layer 𝑙. 
▪ 𝑏(𝑙) ∈ 𝑅𝑛𝑙 is the bias vector for layer 𝑙. 

▪ 𝑎(𝑙−1) is the activated output from the previous 

layer (with 𝑎(0) = ℎ𝑐). 
▪ 𝑛𝑙 is the number of neurons in layer 𝑙. 
▪ 𝑛0 = 𝑑 is the size of the input layer. 
After processing through the 𝐿 fully connected layers, 

the model applies a final linear transformation followed by 
a sigmoid activation to produce the output probability 𝑦̂ 
(Arora et al., 2018; Pratiwi et al., 2020, vol. 1471): 

▪ Linear transformation: 

z(L+1) = w(L+1)⊤
a(L) + b(L+1) ,                      (16) 

▪ Sigmoid activation: 

ŷ = σ(z(L+1)) =
1

1+e−z(L+1).                          (17) 

Where: 

▪ 𝑤(𝐿+1) ∈ 𝑅𝑛𝐿 is the weight vector for the output 
layer. 

▪ ⊤ signifies that the matrix is transposed. 

▪ 𝑏(𝐿+1) ∈ 𝑅 is the bias scalar for the output layer. 
▪ The sigmoid function σ maps the input to a 

probability between 0 and 1. 
The overall function of the model can be summarized as: 

ŷ = fmodel(xs, xt) = 

= σ (w(L+1)⊤
(ϕ ∘ … ∘ ϕ(W(1)hc + b(1))) + b(L+1)).     

(18)
 

Where: 
▪ 𝑓model represents the composition of the LightGBM 

processing of structured data, the DistilBERT processing 
of textual data, and the subsequent fully connected layers 
leading to the final output. 

▪ ∘ denotes function composition. 
▪ ϕ is the activation function applied at each hidden layer. 
This architecture essentially fuses two lightweight 

models that concern separate tasks to produce a 
probabilistic answer whether the data is a part of an 
automation-based attack. Messages that arrive at the 
server's endpoints are often structured and have multiple 
sensical fields. Such fields often hold textual, categorical, 
and numerical data types. Different models perform better 
on different data types and provide corresponding 
accuracy rates. DistilBERT is used to extract complex 
features from textual data, while LightGBM is used for 
categorical and numeric data. 

The concrete applied definition of the model involves 
specifying a number of neurons in each fully connected 
layer through a tuple, such as (512,256,128). The shown 
structure defines three layers with 512, 256, and 128 
neurons. In this case, the dimensions of the weight 
matrices and bias vectors would be: 

▪ 𝑊(1) ∈ 𝑅𝟝𝟙𝟚×𝑑, 𝑏(1) ∈ 𝑅𝟝𝟙𝟚; 

▪ 𝑊(2) ∈ 𝑅𝟚𝟝𝟞×𝟝𝟙𝟚, 𝑏(2) ∈ 𝑅𝟚𝟝𝟞; 



Information Systems and Technologies Security, № 2(8)/2024 

 

30 
ISSN 2707-1758 

▪ 𝑊(3) ∈ 𝑅𝟙𝟚𝟠×𝟚𝟝𝟞, 𝑏(3) ∈ 𝑅𝟙𝟚𝟠; 

▪ 𝑤(4) ∈ 𝑅𝟙𝟚𝟠, 𝑏(4) ∈ 𝑅. 
The combined vector ℎ𝑐 is passed through 𝐿 fully 

connected layers with ReLU activations, computing 
outputs in a cycle for 𝑙 =  1 to 𝐿 : 

{
𝒛(𝒍) = 𝑾(𝒍)𝒂(𝒍−𝟏) + 𝒃(𝒍)

𝐚(𝐥) = 𝜙(𝐳(𝐥)) = max(0, 𝐳(𝐥))
.                      (19) 

The final output is computed using a linear 
transformation followed by a sigmoid activation (Thakur & 
Dhawale): 

{
𝑧(𝐿+1) = 𝑤(𝐿+1)⊤

𝑎(𝐿) + 𝑏(𝐿+1)

𝑦̂ = σ(𝑧(𝐿+1))
.                    (20) 

The model parameters, including the weights and 
biases of the fully connected layers and any trainable 
parameters within 𝑓LGBM and 𝑓DistilBERT, are optimized during 
training to minimize the binary cross-entropy loss. This 
enables the model to make accurate predictions based on 
the input data and learning from both structured and textual 
information that could be passed to the system through the 
common communication structures, such as JSON. 

Description of a target distributed system. Having 
defined the protection model against distributed gradual 
degradation attacks based on continuous monitoring and 
semantic sampling, let us now discuss its applied 
integration into contemporary distributed systems. With the 
theoretical context, parameters, and model properties in 
place, we first outline the architecture of the distributed 
system depicted on Fig. 1: 

 

 

Fig. 1. Architecture of the target distributed system 

 
This architecture represents an abstract system that 

uses the most common data flow methods: storage and 
stream-oriented. It consists of the application-level load 
balancer that routes the requests to the API and WEB 
servers based on the request paths. Subsequently, API 
servers could either perform a state-mutating operation in 
the data warehouse or initiate an asynchronous task 
through the means of queueing services. The common 
approach for building such workflows involves AMQP 
protocol (Prajapati, 2021). 

Protection model application for data warehouse 
services. The data warehouse service is responsible for 

persistent storage, processing, and retrieval of information. 
It is often the case that such services are extremely hard 
to scale and are also the backbone of the stateful 
distributed system. Having said that, due to the extreme 
requirements for availability and consistency, it is important 
to integrate the protection model without impacting the 
response times and minimize influence on the overall 
performance. Fig. 2 shows the integration architecture with 
the persistent storage service: 

 
 

 

 

Fig. 2. Proposed model's integration as an asynchronous monitoring solution 
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The architecture reflects an asynchronous, batch-
processing approach towards resource utilization audits 
and protection gains distributed through gradual degradation 
attacks. The key principle is to allow flowless execution of 
requests and after that schedule retrospective tasks to 
verify the authenticity and validity of the mutations. For that 
purpose, the external "resource audit workers" perform the 
algorithm described within the protection model. Since the 
sliding window 𝑊(𝑡) is itself a parameter, it is possible to 
initialize such batch tasks in the required context. 

Moreover, contemporary production systems tend to 
grow extensively in size. For that purpose, the service 
clusterization could be performed based on the Replica 
State Discovery Protocol (RSDP). RSDP provides a 
lightweight and efficient framework to coordinate cluster-
wide operations execution and state management. Each 

node within such a cluster could leverage the deterministic 
parameters and based on its cluster position, schedule its 
sliding window accordingly (Kotov, Toliupa, & Nakonechnyi, 
2024, p. 102; p. 156). Such an approach is efficient in terms 
of processing power and yet allows for scaling if needed. 

Protection model application for data queueing and 
streaming services. The message queuing services 
primarily work in an "eventually transient mode". That is, 
these services do not save data for too long, often until the 
message processing is confirmed by a connected worker. 
These services are most frequently utilized for asynchronous 
and deferred operations. Which implies that the response 
time is not an issue, allowing for the middleware-oriented 
architecture. Figure 3 shows the integration architecture 
with the message streaming service: 

 

 

Fig. 3. Proposed model's integration as a middleware monitoring solution 

 
Before the target message queue, this architecture 

implies the middleware queue for analytical and security 
processing. The entire model described earlier would be 
executed inside the "resource audit worker". Scalability in 
this case is trivial and does not require any coordination 
mechanism since the logic would entirely mirror the target 
queue's message processing infrastructure. Upon receiving 
new messages, the sliding would operate on a real-time 
basis and directly control the stored buffer size during the 
runtime. The message processing is often coordinated and 
distributed between the workers in a round-robin manner, 
thus effectively integrating load balancing capabilities for 
both the protection model's worker execution and the target 
logic itself (Prajapati, 2021). 

Discussion and conclusions 
Since the distributed attacks could be potentially 

equipped with intelligent means to bypass existing security 
measures, the development of a protection model against 
potential resource leaks is gaining relevance. The recent 
success in the development of artificial generative 
intelligence leads to raising concerns about the safety and 
adequacy of the current security measures against 
automation-based distributed attack vectors. It is often a 
case that the protection models are inclined towards 
prevention of the attack rather than recovery. This approach, 
while targeting the source of risks, often leads to complacent 
design decisions without considering the potential outcomes 
of a successful breach. The proposed model provides a 
theoretical foundation for building systems that both react to 
the active execution of threats and perform recovery 

mechanisms, assuming that the attack may potentially 
bypass initial security measures. 

While developing the protection model against the 
gradual degradation attacks, the primary concern was 
twofold: ensuring that the system is capable of recovering 
from unexpected resource loss and ensuring that the 
detection and monitoring processes themselves don't 
require a superfluous amount of processing power. The 
primary focus was on the integration of the model within the 
operation context of streaming and static storage services. 
As a result, a set of diagrams, mathematical models, and 
theoretical descriptions is provided to simplify implementation 
of the said model in modern distributed systems. 

The proposed model heavily relies on the semantic 
feature extraction capabilities of both decision trees and 
the neural networks. Even though LightGBM and 
Distilbert are both regarded as extremely fast models, 
tuned towards performance and memory usage, it is still 
a case that the execution of the trained model takes a 
significant amount of resources. That is why the proposed 
protection model focuses on the logical optimization 
based on global and internal timeframe discretization and 
statistical methods such as EWMA to reduce as much as 
possible the number of execution calls of the pretrained 
models for the semantic sampling. 

To address the issue of efficiency with static data 
warehouse analysis, the proposed model utilizes global 
and internal discretization of the timeframes. This 
approach allows it to coordinate its operation in a batch-
oriented way. The scalability of such a solution is hence 



Information Systems and Technologies Security, № 2(8)/2024 

 

32 
ISSN 2707-1758 

possible by leveraging deterministic scheduling properties. 
Each monitoring node, knowing its own position in a 
replica, can effectively determine its assigned timeframes. 
In that context, the integration of RSDP provides an 
essential capability to organize a deterministic approach by 
synchronizing states between cluster nodes. 

While addressing streaming services, this paper 
considers thoroughly the capabilities provided by queueing 
protocols such as AMQP. The introduction of middleware 
queues allows us to analyze suspicious messages in real-
time. Additionally, the proposed scaling model involves 
logical extensions for exchanges that allow for statistical 
analysis and avoid redundant verification logic invocation. 
This approach significantly enhances the potential 
efficiency of the proposed model. 

To summarize, the proposed model provides a solid and 
efficient theoretical foundation for managing intelligent 
threats towards digital and processing resources. Its 
implications necessitate continuous monitoring of emerging 
zero-day attacks that may easily bypass modern security 
measures. It is the intention of this article to inspire further 
empirical research, impact assessment of distributed 
gradual degradation attacks and their mitigation methods. 
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МОДЕЛЬ ЗАХИСТУ ВІД РОЗПОДІЛЕНИХ АТАК ПОСТУПОВОГО ВИСНАЖЕННЯ РЕСУРСІВ, 

ЗАСНОВАНА НА СТАТИСТИЧНИХ І СЕМАНТИЧНИХ ПІДХОДАХ 
 
В с т у п .  Нині кожен критично важливий сектор соціальних інституцій виконує свої операції на основі розподілених систем 

оброблення. Сучасна цифрова інфраструктура у своїй роботі значною мірою покладається на дані, що надають користувачі. В 
результаті, розподілені атаки на основі ботнетів перебувають у безперервних "перегонах озброєнь" із методами захисту, які 
фільтрують надходження шкідливих даних. Методи протидії часто покладаються на евристичні способи перевірки, орієнтовані на 
людину. З появою нових досягнень у сфері штучного інтелекту, такі атаки набувають додаткові шляхи досягнення своїх цілей. 
Успішне виконання зазначеного плану може призвести до поступового виснаження ресурсів цільової системи. Метою цього 
дослідження є  намагання уникнути таких загроз за допомогою поєднання статистичних і семантичних підходів. 

М е т о д и .  Це дослідження проводить теоретичний аналіз і систематизацію розподіленої атаки поступового виснаження 
ресурсів у розподілених системах і її значення в контексті технологій штучного інтелекту, що розвиваються. Математичне 
моделювання використовують для визначення властивостей запропонованої моделі захтсту, процесу її інтеграції та виконання. 
Запропонована модель значною мірою покладається на статистичні методи для аналізу часових рядів та їхніх відхилень, а також 
класифікаційні нейронні мережі для семантичного виявлення підозрілої поведінки. 

Р е з у л ь т а т и .  У результаті цього дослідження розроблено нову модель, яка використовує статистичну та семантичну 
перевірку для виявлення аномалій. Процес безперервного моніторингу оптимізований для високонавантажених систем із постійним 
шквалом потоків даних. 

В и с н о в к и .  Оскільки розподілені атаки можуть бути оснащені інтелектуальними засобами для обходу існуючих заходів 
безпеки, то розроблення моделі захисту від потенційних витоків ресурсів набуває актуальності. Відомий нещодавній успіх у 
розробленні штучного генеративного інтелекту викликає занепокоєння щодо безпеки й адекватності поточних заходів безпеки 
проти векторів розподілених атак на основі автоматизації. Часто буває так, що моделі захисту налаштовані на запобігання нападу, 
а не на відновлення. Цей підхід, що орієнтований на джерело збитків, часто призводить до проєктних рішень без урахування 
потенційних результатів успішного порушення. Запропонована модель забезпечує теоретичну основу для створення систем, які 
одночасно реагують на активне виконання загроз і виконують механізми відновлення, припускаючи, що атака потенційно може 
обійти початкові заходи безпеки. 

 

К л ю ч о в і  с л о в а :  розподілені системи, атаки поступового виснаження ресурсів, виснаження ресурсів, статистичний 
аналіз, семантичні підходи, стійкість, LightGBM, Distilbert, EWMA. 
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