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MATHEMATICAL MODEL OF STEGANOGRAPHY USING SUBOPTIMAL DECISIONS
IN DATA COMPRESSION ALGORITHMS

Background. Protecting access to information in the digital age requires the development of digital tools to encrypt and hide
the information from everyone who is not meant to be able to access it. While encryption is great at preventing unauthorized people
from accessing the information, it lets people know that there is something hidden behind the transformation. Steganography instead
allows us to obscure the fact of information concealment in the first place. Unfortunately, common types of steganography rely on
altering the source signal, leaving subtle footprints of data manipulation that can be traced and detected. The goal of this research
paper is to provide a model that has the potential of preserving the source signal in its entirety, instead relying on changing the way
the source signal is represented in digital media in a way that allows us to encode secret data into the output stream.

Methods. A theoretical analysis of steganography approaches on data compression algorithms was conducted. Methods of
preserving source data stream were investigated.

Results. A new model has been developed that uses decision-making processes in data compression algorithms to encode
steganographic data in a resulting data stream. In lossless data compression schemes, it is possible to achieve perfect reproduction
of source data stream, making detection through analysis of underlying signal encoded in data compression algorithms useless.

Conclusions. The need for information security has been increasing over time, with tensions between countries resulting in
new armed conflicts around the world. The ability to embed and covertly send data through steganography may provide a competitive
economic, political, and/or military edge. The developed model can be applied to further develop specific methods of steganographic data
encoding that is resilient to analysis and detection by existing approaches that rely on statistical analysis of underlying signal stream.

K ey w o rd s : steganography, data compression algorithms, signal processing, data security, decision trees, entropy encoding,
arithmetic encoding.

Background between frames, with values of dozens of frames per

With the advent of digital computers, a need to store second being common.
information about the real world in digital form emerged. All these encoding solutions are made with decoding
This information takes a lengthy and complex route in order and reproduction back into physical phenomena in mind. A
to turn from physical phenomena of a light bouncing off of digital encoding of a photo has no use if we cannot present
the surface of a physical object or pressure waves it back into a grid of colors that we can perceive in the real
travelling through the air into a string of numbers, zeroes world with our human eyes. A sound recording is useless if
and ones, that can be stored in computer's memory, and we cannot listen back to it. The process of both capturing
then it needs additional work to be turned from those back analog signals and capturing them into digital form, and
into physical light, sound, or other form of real-life, analog reproducing these digital signals back into physical realm
phenomena — or even objects. Photosensitive diodes turn is imperfect, since the components we use to both
photons of light into electrical signals that we can register transform light, sound, and other sensations into electrical
and process, allowing us to take a photograph of the real signals, and perform the inverse of that, are subject to
world. A transducer turns pressure waves into digital distortions, noise, lack of performance, bias, and other
signals, allowing us to record sound. flaws — though the quality of devices to both capture and

Of course, without a way to represent this information reproduce those signals has been improving since their
in a digital, binary form, there is no way we can store this inception, and continues to this day (Galal, 2016; Rumsey,
information on computer systems. For photographic & Mccormick, 2013, pp. 201-256).
signals, we rasterize visual data, storing color information Storing information in digital form, however, poses a
in discrete, individual cells called pixels. This means that challenge of providing enough storage capacity for a given
we quantize the infinite precision of the real world in two media. Storing color data of a single pixel in a 24-bit image
ways: spacial and spectral. Rasterized pixels would be the takes up three bytes of storage. Multiply that by multiple
spacial quantization, while the color data of those pixels — megapixels that a commonly used 1080p display would
being limited to a finite number of bits we can use to store use, and you arrive at approximately six megabytes of raw
color information in the pixel — would be spectral. For picture data. Videos require thirty of these frames per
sound, the quantization would be temporal and amplitude: second, which quickly turns into a gigabyte of storage
the former splits the infinitely precise stretches of time into capacity being taken up by 5-6 seconds of raw video
distinct (and usually equal) durations of time, during which stream. This explosion of storage capacity that is
a single intensity of the sound signal is assumed. This necessary for storing modern pieces of media means that
signal intensity, just like with pictures, could only be we must somehow reduce the amount of data our media
encoded with a limited number of bits, leading to amplitude object requires to store in digital form. In other words, we
quantization. Video signals, therefore, are usually nothing need to compress digital data.
more than a sequence of pictures presented at equal Modern schemes of digital compression can reach file
intervals of time between one another, synchronized size reduction of dozens of times, if not more (Barina,
with a sound signal coming from one or more sources in 2021; Oztiirk, & Mesut, 2021, pp. 15-20) while preserving
physical space. There is a temporal quantization happening most (if not all) of the detail of the original, uncompressed
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data stream. To achieve high compression ratios,
compression algorithms adapt their approach for various
parts of the source media. For example, when
compressing sound, an algorithm might dedicate more
bandwidth to a more intense part of a song with lots of
different instruments all playing at once, and less
bandwidth to sections with silence or quiet sounds. In other
words, they make decisions based on the source data
stream. Encoding schemes have a limited number of ways
to decide how to compress a certain primitive structure of
the data stream, like a block of pixels or a set of audio
samples. Commonly, they tend to select the best ways of
encoding the data that they expect would take the least
number of bits. In the end, these compression algorithms
produce a smaller, more compact representation of source
media, potentially with some losses in perceptual fidelity
that the algorithm authors considered acceptable for a
given compression ratio. Importantly, these compressed
representations can be decompressed and turned back
into a raw stream of data that can be presented to the user
in the form of a picture, sound, or video.

With established methods of representing — and
compressing — analog media in digital formats, we can shift
our focus to another need: the need to covertly transmit
information. There are two ways we can achieve this:
encryption and steganography. Encryption is the process
of converting readable information into unreadable
information to prevent unauthorized access.
Steganography is the process of embedding secret data
within another object in a way that conceals the presence
of secret data from an unsuspecting observer. Encryption
is great at preventing people from accessing information
they should not have access to, but encrypted data on its
own is obvious, anyone can see there is something there,
painting a target on it. After all, why would somebody
encrypt something that is not worth protecting?
Steganography, on the other hand, does not, on its own,
prevent others from accessing the data, but instead
attempts to hide it in plain sight, preventing people from
knowing it is even there unless they know about it.

There are many different approaches to
steganography, and they depend on the cover media used.
Common types of cover media include pictures, video,
audio, and text (Anas, Ridzuan, & Pitchay, 2025). Broadly,
these techniques tend to either modify the source data
directly (i.e., manipulating pixel color or sound intensity
values by changing their least significant bits (LSB)) or
indirectly through manipulating values in the frequency
domain (Apau et al., 2024). This leads to a material change
to the underlying representation of media; in other words,
after transformation, the raw data that is transmitted to the
screen, played back through the speakers, or printed out
on a sheet of paper, is different from the original data of the
cover media. Though there exist adaptive techniques that
utilize machine learning, artificial intelligence, blockchains,
and other tools to prevent existing steganalysis and
statistical analysis techniques from being able to detect
steganography (Apau et al., 2024, p. 5), they still change
the apparent representation of carrier media. This leaves a
gap in current research, as it is difficult to find a
steganography method that would leave the apparent
representation unchanged.

The objective of this research, therefore, is to develop
a new model of steganographic encoding of data that does
not change the apparent representation of some, if not all,
media objects.
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Methods

In this article, we performed theoretical analysis and
systematization of data compression algorithms and ways
of exploiting their decision-making processes to encode a
secondary, secret message within the encoded cover
media such that apparent result is not changed. Methods
of preserving the apparent representation of carrier media
were investigated.

Results

There are many ways to represent the same data. Data
compression algorithms exploit this idea, attempting to find
a specific representation of a given set of data that takes
up as little storage space as possible. Of course, there are
many trade-offs: processing difficulty (how long does it take
to compress/decompress a file?), compression ratio (how
much smaller the file has become after compression
compared to the original output?), legal constraints (are
there any patents or licensing issues that prevent us from
being able to use this algorithm?), memory requirements
(how much RAM do we need to process this algorithm?),
and many more. There are other considerations that
influence data compression algorithm design. For
example, are there any special properties for the
underlying data we can exploit to achieve better efficiency?
With time, new data structures are discovered, new
mathematical properties are found, and new ways of
representing the same set of data are found, resulting in
innovation in data compression algorithms. One thing that
is worth keeping in mind, however, is that even within the
constraints of a given data compression/decompression
format, there are many ways of representing that data.
Compression programs try to find the best one among
many, but there are other ways to compress the data that
will allow the decompressor to decode that representation
back into the same original raw data.

What if we manipulated the way compression algorithms
worked to produce another, equally valid string of bits that
would decode into the same picture, sound, video, text, or
anything else? Better yet, what if we did so in a way that
allowed us to encode additional information, allowing us to
embed secret information into the compressed result that we
could then transmit without any changes to the source
media? That is the goal of this research.

The overall flow of many compression algorithms takes
three basic steps: take the source data object, define
certain transformations on it, change the way it should
presented through using a certain data structure; perform
decisions as to how the source object should be converted
into this new representation; and finally, convert it into a
binary form that can be stored on a digital storage medium.
For example, with pictures, instead of operating on raw
pixel data, groups of pixels could be analyzed in an attempt
to find larger structural blocks, information about which
could be conveyed not through the raw pixel data, but with
a relationship between a certain overall expectation and
the difference between expectation and reality (W3C,
2025; International Organization for Standardization, 1994;
Google, 2025). As could be seen in Fig. 1, on one of the
compression stages in WebP image format, the
compression algorithm performs various predictions on a
blocks of pixels of fixed size and then chooses the one that
has the best match with actual data (Google, 2025).

Though the original compression algorithm aims to
produce an output that takes up the least amount of space,
it does not have to. If we instead force the compression
algorithm to take different, suboptimal decisions, we could
encode additional data into the resulting compressed file.
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Fig. 2 shows a generalized view of proposed suboptimal
compression decision hijacking steganography approach.
For a given compression format, a set of decisions is
outlined. During compression stage, a steganographic
encoder performs the compression of data as normal until
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Fig. 2. Compression hijacking diagram

Selection hijacking engines (SHjJEs) can be designed
to adapt to specific needs. The most naive approach would
be to hijack all decisions and utilize the entire decision
space available to encode the cyphertext as quickly as
possible. While it is a viable approach, it may result with
significant distortions to the beginning of the source file,
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especially if compression is lossy. Additionally, the
apparent dip in compression ratio between the start and
the end of the file may allow for some steganographic
analysis. A much better approach would be to spread the
hijacked decision points around the entire length of the file.
This would require either multiple compression passes to
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perform precisely, or a decent heuristic approach that
would predict the amount of decision points and their
capacity within a couple of percentage points from ground
truth. Additionally, SHJE can limit its decision space to
powers of two, allowing it to encode bytes directly instead
of resorting to techniques like arithmetic coding (Witten,
Neal, & Cleary, 1977).

Nonetheless, arithmetic coding, or other similar entropy
encoding techniques, could be used in cases where
maximal capacity for encoding secret data is necessary.
What is especially useful in entropy encoding is the ability
to use mixed-radix numeral systems, allowing us to
minimize losses incurred by limiting ourselves to just binary
codes. The reason it is possible to use mixed-radix
numeral systems is because the compression algorithms
tend to have a certain and well-defined set of options at
specific decision points. In other words, the number of
decisions at a specific decision point utilized to encode
secret data stream defines corresponding radix in the
entropy encoding solution. Fig. 3 provides an example
visual illustration of steganographic encoding in action. At
certain points in a compression algorithm, a decision with
multiple options needs to be made. SHJE decides to use
specific decision points to encode the data it needs.
Because selection space is well-defined, the decoder
would know the radix of this hijacked selection, allowing it
to interpret it appropriately.

[ Compression algorithm ]

wiealjsejep papoaug

Fig. 3. Encoding of data through selection hijacking
Decoding secret data stream from a steganographic

media boils down to performing the same steps in reverse:
perform the decoding process; figure out the decision
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space that was available during the encoding step; and
then derive a numerical value that corresponds to an
option that was chosen during encoding.

There are two main components of this new model:
SHIE itself and an embedding engine that integrates it into
a given compression algorithm. While the same SHjE
could be wused within different data formats and
compression algorithms, it requires modifying them to
provide hooks and interfaces for the SHJE to operate on.
While specifics of these implementations are outside of the
scope of this research article (and therefore avenues for
further research), they will need to rely upon specific data
format and compression algorithm details to define valid
decision points that could be used to encode secret data.

Mathematical model. To begin expressing this model
in mathematical terms, we need to introduce some
definitions. Let us define the following:

e R =(1,¥2, Y3 -, Yy) —raw media object of length
n, where y; are media primitives (i.e., pixel brightness,
sound intensity at a given point in time, etc.)

e ¢; —i-th encoding decision with capacity c;.

e [ - encoding decision space for a given data
compression format.

e E(R) = (eq, ey e3,...,ey) — encoding decision chain
for a given raw media object R, Vi € 1,n:¢; € E, VE(R) € E*.

° eiki — resolved encoding decision with resolution
ki: 1< ki <.

o Cp(R) = (ef* ef?, el?, .., efm) — a compression of
R, which is a tuple of resolved encoding decisions which
represent the raw source object.

° CE,S(R) = (efl,eécz,e?,...,e,};m) — a hijacked
compression of R that carries a secret message S.

e D(Cz(R)) =R — a decompression of Cz(R) which
retrieves a decompressed object R.

A compression Cz(R) can be represented as a
sequence of bits B(Cg(R)) = (by, by, b3, ..., b)) of length
|B(Ce(R))|=1. An optimal compression function
Cpoptima(R) derives such a sequence of encoding
decisions e; and their resolutions k; that its length is as
small as possible. In other words, optimal compression
satisfies the condition:

min|B(Cs(R))| = B (Cooptima(®)]. ()

It is important to note, however, that for a given
lossless compression (i.e., the one for which D(Cz(R)) = R
always holds true for any Cz(R)), there is more than one
way to compress a given raw media object R. In other
words, there are many compressions C(R) that can be
decompressed back to R. We can use a subset of
encoding decisions E(R) € E(R) € E* as a carrier for our
secret message S. To do this, we can take each encoding
decision é; € E(R) and, instead of letting the compression
algorithm resolve it, give it to a SHJE, which will use it to
encode a part of a secret message.

To dig deeper into a SHjE, we first need to establish an
arithmetic coding system. Let us assume we have the
following:

e x; — an [-digit mixed-radix number with a finite
number of digits.

e d;—an i-th digit with aradixr; €N, d; € 0, (1; — 1).

e D(x) = (dy,dy, ..., d;) —astring of digits for an input
number x;.

° wl.’ — a weight assigned to the j-th value for i-th digit,

jeLn, wl elo1].
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o W ={w},w? ..., w/'} - aset of weights assigned to
each value an i-th digit could be, where:

Ti
Z wk =1.
k=1

e W(x) =W, ={W,W,, .. W}—acollection of sets
of weights for an input number x;.

o A(D(x), W(x)) = [a,b) — an arithmetic coding of
an input numberx;, 0 <a<b < 1.

The arithmetic coding system works by progressively
dividing a given range [a,b) into smaller regions

€y

A(D(xn), W(xp)) = [an, by), ag =0,by = 1.

dn-1_ d
ap = ap_q + (bpoy — an-) X2y Wh, by = ap + (byoy — ap_w, "

Equation (4) establishes the base case for recursion, and
equation (5) defines the bounds a;, and b, for a number x;,.
While this approach allows us to encode any number, we
have no way of knowing how long that number is. To solve this
problem, a stop digit can be introduced. This would increase
the radix of every digit by one and require adding a new weight
wir"+1 € (0,1). To satisfy the condition set by equation
(1), the full set of weights W; will need to be
rebalanced for each digit to produce a new set of weights W,:

Vi€ rpwh =whx(1—w ). (6)

T = A(Ces(R), Wr) = [ar, b

where W; — weight set collection for a hijacked
compression Cgs(R) defined internally as one of the
parameters of a SHJE, A(D(S), W(S)) - arithmetic coding
of secret data S.

As such, the hijacked compression €E,S(R) is, in some
sense, a byproduct of an attempt to arithmetically code our
secret value using an unconventional mixed radix
numbering system that consists of encoding decisions of a
compression algorithm.

Note that it is not necessary to have a stop digit in the
SHIE, since as soon as it encodes a value that is fully
inside one of the stop digits of arithmetically coded secret
data S, it can stop its processing.

Decoding the secret value S encoded in a hijacked
compression CAEIS(R) is therefore a simple task of letting the
embedding engine define the same subset of an encoding
decision chain E, providing the resolved encoded
decisions el.ki to the SHJE, and then using them to recreate
the value of T, and from that the value of S, assuming the
radices of D(S) and the weight set collection W(S) is
known ahead of time (either by being agreed upon by the
parties using this model to exchange steganographic
information, or being a part of the SHjE configuration).

To summarize, the selection hijacking engine has the
following parameters:

o W; —weight set collection used for creating a target
arithmetic coding.

o W(S) — weight set collection for secret data S.

e 1,5 —radices of digits of secret data S.

e \Whereas the embedding engine has the following
parameters:

e Mapping E(R) — E(R).

e r; —radices of digits of a hijacked encoding, 1 < r; < ¢;.

e Ordering of resolutions k; for all encoding decisions é;.

As such, the embedding engine may decide to
artificially restrict decision space for the SHJE in cases
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r) € [as, bs) = A(D(S), W(S)),

la,by), [b1,by), ..., [by-1,b) (assuming b, =a,

by, = b), where the length of each region is proportional
to the weights W;:

by = by_y = (b — )Wl @)

With that in mind, an arithmetic coding of a number x;

could be defined recursively. Let x;, = |x;];, be a number

comprised of the first h digits of x;, where he€1,l.
Therefore:

(4)
(®)

With that settled, a SHJE is a function that performs
arithmetic coding through manipulating encoding
resolutions k; of encoding decisions é; in a subset of an
encoding decision chain for a given media object E
provided by the embedding engine. More specifically, we
use é; as digits with corresponding radices c;. The SHJE is
also responsible for deciding upon a set of weights W; for
each digit. After that, SHJE can produce arithmetic coding
T of a target value that will embed the secret data S into
the hijacked compression Cz s(R):

@)

where taking a particular decision may result in
undesirable side effects like particularly large file size
increases. Additionally, it is responsible for mapping the
numeric representation of resolutions k; into actual
decisions an encoder it embeds itself into needs to take.

Comparison with existing approaches. Definitions of
this research article could be used to describe most of the
existing steganographic algorithms as well. While their
construction varies in complexity, most of them boil down
to manipulating the raw media object R, performing a
transformation that turns it into an R, the changes in which
compared to the original are imperceptible to the human
senses while providing it a certain property that is useful
for covertly embedding a representation of secret data S.
Least significant bits (LSB) methods operate on raw bits
directly. Transform domain techniques like Discrete Cosine
Transform (DCT), Discrete Wavelet Transform (DWT), etc.
also operate on raw media object data. Same with phase
coding, masking, filtering, and other transformative forms
of steganography.

Selection hijacking method therefore has a unique
advantage that separates it from previous models: it does
not change the raw source media object but merely
changes the way in which it is compressed and stored on
disk. In a lossless compression algorithm, the hijacked
compression leaves the raw source media completely
intact, since, by the definition of a lossless compression

algorithm, D(Cy(R)) = D (Cy5(R)) = R.

This model does have disadvantages, however. Any
deviations from the optimal compression Cg op¢imqi (R) will
result in enlargement of the bit sequence B (EE,S(R)). The
compression space may not necessarily be monotonic,
there may be local minima, and theoretically it is possible
that a given hijacked encoding decision eif“' may be able to
decrease the overall length of the resulting bit sequence, it
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is expected to be an exception, not a rule. This would mean
that the resulting compression CAE,S(R) will result in a larger
file size compared to the optimal compression Cg optimai (R)
achieved by the original compression algorithm. At the
same time, it is worth noting that the resulting file contains
more entropy than just the entropy of the source media
object R, since it also contains a string of secret data S.
Since the source media object R is left intact, it would mean
that the entropy of a file with steganographically embedded
data using this model is larger than the one without it.
Simply put, this model results in larger file sizes.

Moreover, the storage capacity for secret data is limited
by the number of decisions available to the SHJE. Depending
on the compression algorithm used, it may result in orders
of magnitude less storage capacity compared to the
resulting file size. Since no methods based on this model
have been developed yet, and no experimental data has
been provided, it is difficult to estimate the exact impact on
storage capacity it would allow.

Discussion and conclusions

With various data representation and storage schemes
theorized, a problem arises: SHJE synchronization. To be
able to correctly decode secret data stream encoded with
this method, SHJEs on both ends of the process — encoding
and decoding — need to be able to arrive at the same
conclusions in each step of the way.

One solution is to share the implementation details and
SHJE parameters beforehand. While it is a viable
approach, it requires communicating these engine
parameters beforehand through another, external channel.
Once these engine parameters are locked in and
hardcoded into the program that would perform the
encoding/decoding, it would be impossible to change them
without communicating through these external channels,
whether for getting a new copy of the software with new
hardcoded values, or for a new set of configuration options
the end user would be able to input manually after
receiving the necessary SHjE configuration.

A more user-friendly, though more challenging for
implementors way of solving engine synchronization
problems would be to embed SHjE configuration in the
embedded secret data stream itself in the form of a
predefined header. As long as both parties support the
same base set of engine configurations, the encoding party
can easily change engine parameters individually per
media object, or even on the fly. Developing precise
methods of engine synchronization is one of the
possibilities for future research.

Secondly, since the hijacked selections will lead to
lower compression performance, this will lead to a
measurable and noticeable increase in storage capacity
required for storing the compressed (encoded) media
objects. This is an inherent property of this model. Because
the resulting encoded media object theoretically retains all
its original data, encoding additional secret data stream
into it will necessitate an increase in file size. While it is a
feature of this design, it is neither good nor bad. It is simply
a design choice that can either be extremely useful to some
users, or unnecessary to others.

This model would work well on lossless compression
algorithms since, no matter what option is chosen by the
SHJE, the implementation details and design of the
compression algorithm used would eventually lead it to
completely and identically representing the entire source
media object in its processed (encoded) form. However,
this may not be the case for lossy compression algorithms.
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By their nature, they discard certain information from the
resulting data representation, and the decisions performed
by the encoding algorithm influence which datapoints
specifically get discarded. Hijacking those decisions would
mean discarding different data from the resulting
compressed media object. Depending on the design of the
SHIE, this might lead to an encoder SHjE having different
input data compared to the decoder SHjE, preventing them
from being able to synchronize properly. Further research
is required to adapt this model into specific methods that
would address these concerns and make it possible to
encode steganographic data in lossy media objects.

Furthermore, this model's performance is limited by the
compression algorithm it is implemented on. To encode the
secret data stream, it needs to not only perform the native
compression steps but also spend computational
resources into hijacking those decisions. Since those
decisions are suboptimal, it is entirely likely that the
compression algorithm would also need to spend more
computational resources “cleaning up” after taking that
suboptimal decision, further limiting its performance.
Currently, it is only speculation, and further research is
necessary to observe the impact of selection hijacking on
compression speed and efficiency.

Additionally, without further SHJE tuning, with secret
data streams that are shorter than the potential embedding
capacity of a given media object, all the suboptimal
compression decisions would be bunched up at the front
of the file. This would allow for a potential statistical
analysis attack that would allow adversaries to potentially
detect this kind of manipulation. It is important to find ways
of spreading out the hijacked decisions in a consistent way
that is indistinguishable from randomness.

Finally, this model is well-suited for a wide variety of
compression algorithms, but its implementation into actual
methods requires specializing it for a particular compression
algorithm, or even a particular implementation of encoders and
decoders. While the theory might be broad, practical
implementations need to be the focus of further research to
make sure this model can be effectively leveraged in the future.

In conclusion, a new model of encoding steganographic
data into media objects without changing their apparent
representation was developed and proposed. This model is
capable of being used on any kind of media if it has a
compression algorithm that needs to perform decisions to
optimize its performance. Further research is required to
develop specific methods of implementing this model for
specific data formats and compression algorithm
implementations to bring this model from the realm of theory
into the realm of practical application.
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MATEMATUYHA MOAENb CTEFAHOIPA®II,
LLIO BUKOPUCTOBYE HEONTUMAIJIbHI PILLEHHA B AINTOPUTMAX CTUCHEHHA OAHUX

B cTyn. 3axucm docmyny 0o iHgpopmauii 8 yugpoey enoxy eumazae po3pobrieHHs yugpoeux iHCmMpymeHmie Onsi wugpyeaHHss ma
npuxoeyeaHHsi iHghopmauyii eid ycix, xmo He noeuHeH mamu 0o Hei docmyn. Xo4a wugpyeaHHs1 Yydoeo 3anobizcae docmyny Ao iHgpopmayii
Heaemopu3ogaHuMu ocobamu, 60HO 00380Jisie 1AM 3Hamu, ujo 3a NepemeopPeHHsIM ujockb npuxoeaHo. Hamomicmsb, cmezaHozpadpisi dae
3mMo2y npuxoeamu camM ¢hakm rnpuxoeyeaHHsi iHgpopmauii. Ha xanb, nowupeHi munu cmezaHozpadgii noknadaromscsi Ha 3MiHy euxiOHo20
cuzHany, 3anuwaroyu Masonomimdi cnidu madinynsyit i3 daHumu, siki MoxHa eiocmexumu ma eusieumu. Memoro yiei cmammi € HadaHHs
modeni, sika Mae nomeHyian Onsi 36epexxeHHs1 8uxiOHO20 cuzHasy 8 MoeHoMy 06cs3i, 3aMicmb Ub020 Moknadayucb Ha 3MiHY crnocoby
npedcmaesieHHs1 8UxiOHO20 cu2Hasly 6 yugpoeux HOcissx y makuii crnoci6, ujo6 Mamu Moxnueicmb kodyeamu cekpemHi OaHi y euxiOHul nomik.

MeTonawn. llpoeedeHo meopemuyHuii aHani3 cmezaHozpagiyHux nidxodie do anzopummie cmucHeHHs1 GaHux. [ocnidxeHo memodu
36epexeHHs1 sUXiOHO20 MOMOKY GaHux.

Pe3ynbTaTtu. Po3pobrneHo Hogy Modesb, sika euKopucmoesye npoyecu npuliHAmms piweHb 8 afn2opummax CmMUCHeHHs1 0aHux ons
KodyeaHHsI cmezaHozpaghiyHuUXx OGaHux y pe3ynbmyro4oMmy nomouyi OaHux. Y cxeMax CMUCHeHHs1 OaHux 6e3 empam Moxnueo docssamu
ideanbHo20 8idmMeopeHHs1 8uxiOHO20 MOMOKYy OaHUX, W0 YHEMOXX/IUBJIHOE 8USI8JIEHHS] WIISIXOM aHali3y OCHOBHO20 cu2Haiy, 3ako008aHO20 &
anzopummax CmMucHeHHs1 0aHuXx.

BucHoBku. lNlompeba e iHghopmauyiliHili 6e3neyi i3 4yacom 3pocmae, a HanpyxeHicmb MiX KpaiHamu npu3eodums A0 HO8UX 36POUHUX
KoHepnikmie no ecbomy ceimy. Moxnueicms e6ydogyeamu ma npuxoeaHo Hadcusamu OaHi 3a dornomMo20r0 cmeaaHoz2pagii Moxe 3abezneyumu
KOHKYPEeHMHY eKOHOMIiYHY, nonimu4Hy ma/a6o egilicbkosy nepeeazy. Po3pobrieHy Modesib MOXHa 3acmocyeamu 0151 100asibwo20 po3po6r1eHHs
KOHKpemHux mMemodie cmezaHozpaghiyHo20 KodyeaHHs1 GaHux, cmilikux 00 aHanizy ma eusiesieHHs1 3a 00NoMo20r0 iCHylYux nioxodie, wjo
crnuparomsbcsi Ha cmamucmuyHul aHasni3 nomoky 6a30e020 cuzHarny.

Knw4yoBi cnoBa:cmezaHozpagis, anzopummu cmucHeHHs1 0aHUX, 06pobieHHs1 cuaHanie, 3axucm iHghopmayii, depeea npuliHAMmMs
piweHb, eimponiliHe koOyeaHHsl, apugpMmemuyHe KoOyB8aHHSI.

ABTOpPY 3a8BMnATb NPO BiACYTHICTb KOHAMIKTY iHTepeciB. CnoHcopu He Gpanu yyacTi B po3pobneHHi gocnigkeHHs; y 36opi, aHanisi
4¥ iHTepnpeTaLil AaHKX; y HanucaHHi pykonucy; B pilleHHi Npo ny6nikauito pesynbTaTiB.
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